Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vet Sci ; 9(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36136677

RESUMO

Electronic nose devices (EN) have been developed for detecting volatile organic compounds (VOCs). This study aimed to assess the ability of the MENT-EGAS prototype-based EN to respond to direct sampling and to evaluate the influence of possible error sources that might affect the quality of VOC signatures. This study was performed on a dairy farm using 11 (n = 11) multiparous Holstein-Friesian cows. The cows were divided into two groups housed in two different barns: group I included six lactating cows fed with a lactating diet (LD), and group II included 5 non-lactating late pregnant cows fed with a far-off diet (FD). Each group was offered 250 g of their respective diet; 10 min later, exhalated breath was collected for VOC determination. After this sampling, 4 cows from each group were offered 250 g of pellet concentrates. Ten minutes later, the exhalated breath was collected once more. VOCs were also measured directly from the feed's headspace, as well as from the environmental backgrounds of each. Principal component analyses (PCA) were performed and revealed clear discrimination between the two different environmental backgrounds, the two different feed headspaces, the exhalated breath of groups I and II cows, and the exhalated breath within the same group of cows before and after the feed intake. Based on these findings, we concluded that the MENT-EGAS prototype can recognize several error sources with accuracy, providing a novel EN technology that could be used in the future in precision livestock farming.

2.
Vet Sci ; 9(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36548849

RESUMO

Estrus detection is very important for the profitability of dairy herds. Different automatic systems for estrus detection have been developed over the last decades. Our study aimed to assess the ability of the electronic nose (EN) MENT-EGAS prototype to detect estrus, based on odor release from the perineal headspace in dairy cattle by direct sampling. The study was performed in an Italian dairy farm using 35 multiparous Holstein-Friesian cows. The cows were divided into three groups: group I included 10 lactating 5-month pregnant cows, group II included 19 lactating cycling cows, and group III included 6 cows that were artificially inseminated 18 days before the trial. Odors from the perineal headspace were collected using the MENT-EGAS prototype. In group I, odors were collected once a day for 5 consecutive days. In group II, odors were collected twice daily from day 18 until day 1 of the reproductive cycle. In group III, odors were also collected twice daily from the presumable day 18 of gestation until day 22. Principal component analyses (PCA) of the perineal headspace samples were performed. PCA in group I revealed no significant discrimination. PCA in group II revealed clear discrimination between proestrus and estrus, and between estrus and metestrus but no significant discrimination was obtained between proestrus and metestrus. PCA in group III revealed that in four cows the results were similar to group I and in two cows the results were similar to group II. On day 40 of the presumable pregnancy, the ultrasound examination revealed that only the four cows were pregnant and the other two cows were regularly cycling. On the basis of our findings, we conclude that it is possible to accurately detect estrus in dairy cattle from directly collected odor samples using the MENT-EGAS prototype. This represents the first study of estrus detection using an EN detection by direct sampling. EN technologies, such as MENT-EGAS, could be applied in the future in dairy cattle farms as a precise, non-invasive method for estrus detection.

3.
Stem Cell Res Ther ; 12(1): 336, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112243

RESUMO

BACKGROUND: Intra-bone marrow injection (IBMI) in rats is adopted in many studies for stem cell and hematopoietic cell transplantation. IBMI in the tibia or the femur results in severe distress to the animal. Therefore, this study aims to evaluate intra-iliac injections as an alternative approach for IBMI. METHODS: Twenty-seven Sprague Dawley rats were assigned into 3 groups, 9 rats each, for 4 weeks. The control group rats were not injected. Tibia group rats were injected intra-tibial and the iliac group rats were injected intra-iliac with saline. Behavioral, radiological, histopathological, and stress evaluation was performed. Total bilirubin, cortisol, and insulin-like growth factor-1 (IGF1) were measured. RESULTS: Behavioral measurements revealed deviation compared to control, in both injected groups, on the 1st and 2nd week. By the 3rd week, it was equivalent to control in the iliac group only. Bilirubin and cortisol levels were increased by intra-tibial injection compared to intra-iliac injection. The IGF-1 gene expression increased compared to control at 1st and 2nd weeks in intra-iliac injection and decreased by intra-tibial injection at 2nd week. The thickness of the iliac crest was not different from the control group, whereas there were significant differences between the control and tibia groups. Healing of the iliac crest was faster compared to the tibia. In the 3rd week, the tibia showed fibrosis at the site of injection whereas the iliac crest showed complete bone reconstruction. CONCLUSION: Intra-iliac injections exert less distress on animals, and by 3 weeks, they regained their normal activity in comparison to intra-tibial injections.


Assuntos
Ílio , Tíbia , Animais , Medula Óssea , Células da Medula Óssea , Ratos , Ratos Sprague-Dawley
4.
Neurotoxicology ; 70: 19-25, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30392869

RESUMO

Propiconazole (PCZ) is an ergosterol biosynthesis inhibiting fungicide. Carvacrol (CAR) is a monoterpenoid phenol that has various beneficial health effects. The current research was designed to study the impact of PCZ on the behavior of rats and its ability to induce DNA damage in neurons as well as to clarify the ameliorative effect of CAR against these toxic impacts. Sixty Sprague-Dawley rats were randomly and equally divided into 4 experimental groups and treated daily by oral gavage for 2 months as follows: Group 1 (control); group 2 treated with PCZ (75 mg/kg); group 3 treated with CAR (50 mg/kg) and group 4 treated with both PCZ and CAR. Behavioral tests demonstrated that exposure to PCZ had a deleterious effect on psychological, motor and cognitive neural functions. Additionally, antioxidant enzyme activities, SOD and GSH-Px, were declined in brain tissue following exposure to PCZ. Moreover, comet assay revealed a high percent of DNA damage in the brain of rats exposed to PCZ. On the other hand, CAR administration ameliorated the harmful effects induced by PCZ through a protective mechanism that involved the improvement of neural functions and attenuation of oxidative stress and DNA damage.


Assuntos
Encéfalo/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Dano ao DNA/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Monoterpenos/uso terapêutico , Triazóis/toxicidade , Animais , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Cimenos , Dano ao DNA/fisiologia , Comportamento Exploratório/fisiologia , Monoterpenos/farmacologia , Ratos , Ratos Sprague-Dawley
5.
Neurotoxicology ; 67: 141-149, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29852196

RESUMO

Propiconazole (PCZ) is a triazole fungicide extensively used in agriculture. Carvacrol (CAR) is a naturally occurring phenolic monoterpene which has various biological and pharmacological effects. The present study was designed to investigate the neurobehavioral toxic effects of PCZ in albino rats and to evaluate the ameliorative role of CAR against such toxic effects. Sixty adult male rats were used in this investigation; they were randomly and equally divided into 4 groups: control group, PCZ group, CAR group and PCZ + CAR group. PCZ (75 mg/kg) and/or CAR (50 mg/kg) were administered daily by oral gavage for 8 weeks. Behavioral investigation clearly demonstrated the negative impact of PCZ on psychological, motor and cognitive brain functions. Exposure to PCZ also adversely affected the measured oxidative stress and lipid peroxidation parameters in brain tissue. A significant decrease in activity of acetylcholinesterase enzyme in neural tissue was also observed in PCZ-exposed rats. Histopathological examination of the cerebrum, cerebellum, and hippocampus showed various histopathological lesions after exposure to PCZ which were confirmed by immunohistochemical examination. On the other hand, co-administration of CAR ameliorated most of the undesirable effects of PCZ.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Monoterpenos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Triazóis/toxicidade , Animais , Encéfalo/patologia , Cimenos , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Ratos , Resultado do Tratamento
6.
Int J Vet Sci Med ; 5(2): 98-104, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30255057

RESUMO

It is now generally accepted that animal studies are playing an important role in the understanding of anxiety disorders, since they contribute to the current knowledge regarding the mechanisms and possible therapeutic approaches in anxiety. In the present review we will detail some essential aspects of behavioral animal models of anxiety related to social defeat paradigm, elevated plus maze, elevated zero or T maze, light/dark box, social interaction test or tests based on predator models, considering the latest theories and methodological approaches in this area of research, as well as our previous studies focusing on anxiety manifestations in a variety of species including rats, zebrafish, dogs and pigs. Moreover, in this context, we will focus on the recent theories concerning oxidative stress, as well as importance of oxytocin administration (especially the intranasal route). This could be important considering that these two factors are currently being investigated as possible mechanisms (oxidative stress status) and related therapeutic target (both intranasal oxytocin and antioxidants) in the pathology of the anxiety disorders.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa