Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Traffic ; 22(3): 64-77, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33314495

RESUMO

The endoplasmic reticulum (ER) is involved in biogenesis, modification and transport of secreted and membrane proteins. The ER membranes are spread throughout the cell cytoplasm as well as the export domains known as ER exit sites (ERES). A subpopulation of ERES is centrally localized proximal to the Golgi apparatus. The significance of this subpopulation on ER-to-Golgi transport remains unclear. Transport carriers (TCs) form at the ERES via a COPII-dependent mechanism and move to Golgi on microtubule (MT) tracks. It was shown previously that ERES are distributed along MTs and undergo chaotic short-range movements and sporadic rapid long-range movements. The long-range movements of ERES are impaired by either depolymerization of MTs or inhibition of dynein, suggesting that ERES central concentration is mediated by dynein activity. We demonstrate that the processive movements of ERES are frequently coupled with the TC departure. Using the Sar1a[H79G]-induced ERES clustering at the perinuclear region, we identified BicaudalD2 (BicD2) and Rab6 as components of the dynein adaptor complex which drives perinuclear ERES concentration at the cell center. BicD2 partially colocalized with ERES and with TC. Peri-Golgi ERES localization was significantly affected by inhibition of BicD2 function with its N-terminal fragment or inhibition of Rab6 function with its dominant-negative mutant. Golgi accumulation of secretory protein was delayed by inhibition of Rab6 and BicD2. Thus, we conclude that a BicD2/Rab6 dynein adaptor is required for maintenance of Golgi-associated ERES. We propose that Golgi-associated ERES may enhance the efficiency of the ER-to-Golgi transport.


Assuntos
Retículo Endoplasmático , Complexo de Golgi , Transporte Biológico , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Membranas Intracelulares , Microtúbulos , Transporte Proteico
2.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686213

RESUMO

The prototypical receptor tyrosine kinase epidermal growth factor receptor (EGFR) is regulated by a set of its ligands, which determines the specificity of signaling and intracellular fate of the receptor. The EGFR signaling system is well characterized in immortalized cell lines such as HeLa derived from tumor tissues, but much less is known about EGFR function in untransformed multipotent stromal/stem cells (MSCs). We compared the effect of epidermal growth factor (EGF), transforming growth factor-α (TGF-α) and amphiregulin (AREG) on physiological responses in endometrial MSCs (enMSC) and HeLa cells. In addition, using Western blotting and confocal microscopy, we studied the internalization and degradation of EGFR stimulated by the three ligands in these cell lines. We demonstrated that unlike HeLa, EGF and TGF-α, but not AREG, stimulated enMSC proliferation and prevented decidual differentiation in an EGFR-dependent manner. In HeLa cells, EGF targeted EGFR for degradation, while TGF-α stimulated its recycling. Surprisingly, in enMSC, both ligands caused EGFR degradation. In both cell lines, AREG-EGFR internalization was not registered. In HeLa cells, EGFR was degraded within 2 h, restoring its level in 24 h, while in enMSC, degradation took more than 4-8 h, and the low EGFR level persisted for several days. This indicates that EGFR homeostasis in MSCs may differ significantly from that in immortalized cell lines.


Assuntos
Fator de Crescimento Epidérmico , Células-Tronco Mesenquimais , Feminino , Humanos , Fator de Crescimento Epidérmico/farmacologia , Anfirregulina , Fator de Crescimento Transformador alfa/farmacologia , Células HeLa , Ligantes , Receptores ErbB , Receptores Proteína Tirosina Quinases , Endométrio
3.
Biochem Biophys Res Commun ; 473(1): 17-22, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26993163

RESUMO

Tethering factor EEA1, mediating homotypic fusion of early endosomes, was shown to be localized in membrane-bound state both in serum-deprived and stimulated for EGF receptor endocytosis cells. However, it is not known whether dynamics behavior of EEA1 is affected by EGF stimulation. We investigated EEA1 cytosol-to-membrane exchange rate in interphase HeLa cells by FRAP analysis. The data obtained fitted two-states binding model, with the bulk of membrane-associated EEA1 protein represented by the mobile fraction both in serum-starved and EGF-stimulated cells. Fast recovery state had similar half-times in the two cases: about 1.6 s and 2.8 s, respectively. However, the recovery half-time of slowly cycled EEA1 fraction significantly increased in EGF-stimulated comparing to serum-starved cells (from 21 to 99 s). We suppose that the retardation of EEA1 fluorescence recovery upon EGF-stimulation may be due to the increase of activated Rab5 on endosomal membranes, the growth of the number of tethering events between EEA1-positive vesicles and their clustering.


Assuntos
Endocitose , Fator de Crescimento Epidérmico/química , Proteínas de Transporte Vesicular/química , Animais , Membrana Celular/metabolismo , Citosol/metabolismo , Cães , Endossomos/metabolismo , Receptores ErbB/química , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/química , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Microscopia de Fluorescência , Plasmídeos/metabolismo
4.
PLoS One ; 15(5): e0232532, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32357161

RESUMO

Early endosomes, regarded as the main sorting station on endocytic pathway, are characterized by high frequency of homotypic fusions mediated by tethering protein EEA1. Despite intensive investigations, biogenesis of endosomes, boundaries between early and late endosomes, and process of cargo transition though them remain obscure. Here, using EGF/EGFR endocytosis as a model and confocal microscopy of fixed and live cells, we provide evidence favoring EEA1-vesicles being pre-existed vesicular compartment, that maintains its resident proteins' level and is sensitive to biosynthetic, but not endocytic pathway disturbance. EEA1-vesicles directly fuse with incoming EGF/EGFR-vesicles into hybrid endosomes with separated EEA1- and EGFR-domains, thus providing a platform for rapid achievement of an excess of surface-derived membrane that is used to form intraluminal vesicles (ILVs). Thus, multivesicular structures colocalized with EEA1 are still early endosomes. "EEA1-cycle" ends by exclusion of EGFR-containing domains with ILVs inside that turns into MVE and restoration of initial EEA1-vesicles population.


Assuntos
Endossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Vias Biossintéticas , Meios de Cultura Livres de Soro , Vesículas Citoplasmáticas/metabolismo , Endocitose , Receptores ErbB/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Microscopia Confocal , Modelos Biológicos , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo
5.
Aging (Albany NY) ; 12(2): 1987-2004, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31951594

RESUMO

Stress-induced premature cell senescence is well recognized to be accompanied by emerging the senescence-associated secretory phenotype (SASP). Secreted SASP factors can promote the senescence of normal neighboring cells through autocrine/paracrine pathways and regulate the senescence response, as well. Regarding human endometrium-derived mesenchymal stem cells (MESCs), the SASP regulation mechanisms as well as paracrine activity of senescent cells have not been studied yet. Here, we examined the role of insulin-like growth factor binding protein 3 (IGFBP3) in the paracrine senescence induction in young MESCs. The H2O2-induced premature senescence of MESCs led to increased IGFBP3 in conditioned media (CM). The inhibitory analysis of both MAPK and PI3K signaling pathways showed that IGFBP3 releasing from senescent cells is mainly regulated by PI3K/Akt pathway activity. IGFBP3 appears to be an important senescence-mediating factor as its immunodepletion from the senescent CM weakened the pro-senescent effect of CM on young MESCs and promoted their growth. In contrast, young MESCs acquired the senescence phenotype in response to simultaneous addition of recombinant IGFBP3 (rIGFBP3). The mechanism of extracellular IGFBP3 internalization was also revealed. The present study is the first to demonstrate a significant role of extracellular IGFBP3 in paracrine senescence induction of young MESCs.


Assuntos
Endométrio/citologia , Endométrio/metabolismo , Células-Tronco Mesenquimais/metabolismo , Comunicação Parácrina , Senescência Celular , Endocitose , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
6.
J Bioinform Comput Biol ; 15(2): 1750008, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28351215

RESUMO

The quantitative characterization of endocytic vesicles in images acquired with microscope is critically important for deciphering of endocytosis mechanisms. Image segmentation is the most important step of quantitative image analysis. In spite of availability of many segmentation methods, the accurate segmentation is challenging when the images are heterogeneous with respect to object shapes and signal intensities what is typical for images of endocytic vesicles. We present a Morphological reconstruction and Contrast mapping segmentation method (MrComas) for the segmentation of the endocytic vesicle population that copes with the heterogeneity in their shape and intensity. The method uses morphological opening and closing by reconstruction in the vicinity of local minima and maxima respectively thus creating the strong contrast between their basins of attraction. As a consequence, the intensity is flattened within the objects and their edges are enhanced. The method accurately recovered quantitative characteristics of synthetic images that preserve characteristic features of the endocytic vesicle population. In benchmarks and quantitative comparisons with two other popular segmentation methods, namely manual thresholding and Squash plugin, MrComas shows the best segmentation results on real biological images of EGFR (Epidermal Growth Factor Receptor) endocytosis. As a proof of feasibility, the method was applied to quantify the dynamical behavior of Early Endosomal Autoantigen 1 (EEA1)-positive endosome subpopulations during EGF-stimulated endocytosis.


Assuntos
Algoritmos , Biologia Computacional/métodos , Processamento de Imagem Assistida por Computador/métodos , Vesículas Transportadoras , Endocitose/fisiologia , Endossomos/metabolismo , Receptores ErbB/metabolismo , Células HeLa , Humanos , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa