RESUMO
Histone modifications are catalyzed and recognized by specific proteins to regulate dynamic DNA metabolism processes. NSD2 is a histone H3 lysine 36 (H3K36)-specific methyltransferase that is associated with both various transcription regulators and DNA repair factors. Specifically, it has been implicated in the repair of DNA double-strand breaks (DSBs); however, the role of NSD2 during DSB repair remains enigmatic. Here, we show that NSD2 does not accumulate at DSB sites and that it is not further mobilized by DSB formation. Using three different DSB repair reporter systems, which contained the endonuclease site in the active thymidine kinase gene (TK) locus, we demonstrated separate dose-dependent effects of NSD2 on homologous recombination (HR), canonical-non-homologous end joining (c-NHEJ), and non-canonical-NHEJ (non-c-NHEJ). Endogenous NSD2 has a role in repressing non-c-NHEJ, without affecting DSB repair efficiency by HR or total NHEJ. Furthermore, overexpression of NSD2 promotes c-NHEJ repair and suppresses HR repair. Therefore, we propose that NSD2 has functions in chromatin integrity at the active regions during DSB repair.
RESUMO
The puzzling sex ratio behavior of Melittobia wasps has long posed one of the greatest questions in the field of sex allocation. Laboratory experiments have found that, in contrast to the predictions of theory and the behavior of numerous other organisms, Melittobia females do not produce fewer female-biased offspring sex ratios when more females lay eggs on a patch. We solve this puzzle by showing that, in nature, females of Melittobia australica have a sophisticated sex ratio behavior, in which their strategy also depends on whether they have dispersed from the patch where they emerged. When females have not dispersed, they lay eggs with close relatives, which keeps local mate competition high even with multiple females, and therefore, they are selected to produce consistently female-biased sex ratios. Laboratory experiments mimic these conditions. In contrast, when females disperse, they interact with nonrelatives, and thus adjust their sex ratio depending on the number of females laying eggs. Consequently, females appear to use dispersal status as an indirect cue of relatedness and whether they should adjust their sex ratio in response to the number of females laying eggs on the patch.
Assuntos
Distribuição Animal/fisiologia , Tamanho da Ninhada/genética , Oviposição/genética , Razão de Masculinidade , Vespas/genética , Animais , Comportamento Competitivo/fisiologia , Comportamento Cooperativo , Feminino , Masculino , Zigoto/crescimento & desenvolvimentoRESUMO
Species of the Brazilian cave barklouse genus Neotrogla (Psocodea: "Psocoptera": Trogiomorpha: Prionoglarididae: Sensitibillini) are known to have a "female penis (gynosome)" that functions as an intromittent organ inserted into the membranous pouches in the simple male genital chamber during copulation to receive semen. However, the functions of other male and female genital structures and the copulatory processes of Neotrogla were completely unknown to date. Based on µCT observation of the male and female postabdomen and connected muscles both before and in copula, we clarified the functions of the male and female genital structures. In addition, based on the analyses of the established 3D models, we concluded that precise and rigid contact of multiple genital structures, and step-by-step releases of each holding mechanism achieved by the cooperation of both sexes are involved in the copulatory processes. The coevolution between the male and female genital structures in Neotrogla may provide a new example for the evolution of tolerance traits.
Assuntos
Genitália , Insetos , Animais , Feminino , Masculino , Brasil , Genitália Masculina , Copulação/fisiologia , NeópterosRESUMO
The evolution of a female penis is an extremely rare event and is only known to have occurred in a tribe of small cave insects, Sensitibillini (Psocodea: Trogiomorpha: Prionoglarididae). The female penis, which is protrudable and inserted into the male vagina-like cavity during copulation to receive semen, is thought to have evolved independently twice in this tribe, in the Brazilian Neotrogla and the African Afrotrogla. These findings strongly suggest that there are some factors unique to Sensitibillini that have facilitated female penis evolution. Here, several hypothetical factors are presented that may have enabled the evolution of the female penis in Sensitibillini. The female-female competition for nutritious semen, the oligotrophic environment, and the twin insemination slots with switching valve are considered to be the driving factors for female penis evolution. Additionally, the following factors are considered responsible for relaxing the constraint against female penis evolution: preexistence of the female-above mating position, the elongated duct connecting the female pre-penis with the sperm storage organ, and the small male genital cavity accepting the female genital tubercle bearing the opening of this duct. Understanding the factors enabling female penis evolution may also shed light on the evolution of the male penis.
Assuntos
Evolução Biológica , Neópteros/genética , Pênis/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Cavernas , Comportamento Competitivo , Copulação , Etologia/métodos , Feminino , Masculino , Preferência de Acasalamento Animal , Filogenia , Reprodução/genética , Sêmen , SexoRESUMO
The evolution of laterality, that is the biased use of laterally paired, morphologically symmetrical organs, has attracted the interest of researchers from a variety of disciplines. It is, however, difficult to quantify the fitness benefits of laterality because many organs, such as human hands, possess multimodal functions. Males of the earwig Labidura riparia (Insecta: Dermaptera: Labiduridae) have morphologically similar laterally paired penises, only one of which is used for inseminating the female during a single copulation bout, and thus provide a rare opportunity to address how selection pressure may shape the evolution of population-level laterality. Our population studies revealed that in 10 populations, located at 2.23-43.3° north, the right penis is predominantly used for copulating (88.6%). A damaged penis was found in 23% of rare left-handers, suggesting that the left penis can function as a spare when the right one is damaged. By pairing L. riparia females with surgically manipulated males, we found that males forced to use the right penis outperformed left-handed males in copulation (the probability of establishing genital coupling during the 1-hr observation period: odds ratio [OR] of 3.50) and insemination (probability of transferring a detectable amount of sperm: OR of 2.94). This right-handed advantage may be due to the coiled morphology of the sperm storage organ with a right-facing opening. Thus, female genital morphology may play a significant role in the evolution of handedness and may have acted as a driving force to reduce penis number in related taxa.
Assuntos
Aptidão Genética , Insetos/anatomia & histologia , Insetos/genética , Pênis/anatomia & histologia , Animais , Copulação , Masculino , Comportamento Sexual AnimalRESUMO
Limited attention has been given to ecological factors influencing the coevolution of male and female genitalia. The innovative ovipositor of Drosophila suzukii, an invading fruit pest, represents an appealing case to document this phenomenon. The serrated saw-like ovipositor is used to pierce the hard skin of ripening fruits that are not used by other fruit flies that prefer soft decaying fruits. Here, we highlight another function of the ovipositor related to its involvement in genital coupling during copulation. We compared the morphology and coupling of male and female genitalia in this species to its sibling species, Drosophila subpulchrella, and to an outgroup species, Drosophila biarmipes These comparisons and a surgical manipulation indicated that the shape of male genitalia in D. suzukii has had to be adjusted to ensure tight coupling, despite having to abandon the use of a hook-like structure, paramere, because of the more linearly elongated ovipositor. This phenomenon demonstrates that ecological niche exploitation can directly affect the mechanics of genital coupling and potentially cause incompatibility among divergent forms. This model case provides new insights towards elucidating the importance of the dual functions of ovipositors in other insect species that potentially induce genital coevolution and ecological speciation.
Assuntos
Copulação , Drosophila/anatomia & histologia , Genitália Feminina/anatomia & histologia , Genitália Masculina/anatomia & histologia , Animais , Evolução Biológica , Ecossistema , Feminino , Frutas/parasitologia , Masculino , Oviposição , Especificidade da EspécieRESUMO
The cave-dwelling psocid tribe Sensitibillini (Afrotrogla, Neotrogla and Sensitibilla) is of special morphological and evolutionary interest because of its possession of reversed copulatory organs: i.e. females of Afrotrogla and Neotrogla have a penis-like organ. The female penis structure is highly variable among taxa, as is the case of the male penis in animals with normal copulatory organs. Here, we present the first molecular phylogeny of Sensitibillini and analyse the evolutionary pattern of their genitalia. Afrotrogla and Neotrogla did not form a monophyletic clade, and their female penis structures are significantly different, suggesting two independent origins of the female penis within Sensitibillini. In Neotrogla, the species that has a simple female penis is embedded among species that have an elaborate penis, and detailed structures of the female penis elaborations are in exact agreement among species, suggesting a secondary simplification of the female penis. A correlated evolutionary pattern between male and female genitalia was also detected. This coevolution of genitalia may suggest that sexual conflict or cryptic 'male' choice drove the diversity of the female penis, as is the case of male penile diversity in animals with conventional genitalia.
Assuntos
Evolução Biológica , Insetos/anatomia & histologia , Comportamento Sexual Animal , Animais , Cavernas , Feminino , Masculino , Pênis/anatomia & histologia , Filogenia , Vagina/anatomia & histologiaRESUMO
We surveyed natural population of the Drosophila ananassae species complex on Penang Island, Malaysia. Analyses of phenotypic traits, chromosome arrangements, molecular markers, and reproductive isolation suggest the existence of two species: D. ananassae and D. cf. parapallidosa. Molecular marker analysis indicates that D. cf. parapallidosa carries chromosome Y and 4 introgressions from D. ananassae. Thus, D. cf. parapallidosa seems to be a hybrid descendant that recently originated from a natural D. parapallidosaâ× D. ananassaeâ cross. Furthermore, D. cf. parapallidosa behaves differently from authentic D. parapallidosa with respect to its reproductive isolation from D. ananassae. Premating isolation is usually seen in only the D. ananassaeâ× D. parapallidosaâ cross, but we observed it in crosses of both directions between D. ananassae and D. cf. parapallidosa. In addition, hybrid males from the D. ananassaeâ× D. parapallidosaâ cross are usually sterile, but they were fertile when D. ananassaeâ were mated with D. cf. parapallidosa â. We attempted an artificial reconstruction of the hybrid species to simulate the evolutionary process(es) that produced D. cf. parapallidosa. This is a rare case of natural hybrid population in Drosophila and may be a useful system for elucidating speciation with gene flow.
Assuntos
Drosophila/genética , Animais , Drosophila/anatomia & histologia , Drosophila/classificação , Feminino , Hibridização Genética , Malásia , Masculino , Especificidade da EspécieRESUMO
Why females of many species mate multiply is a major question in evolutionary biology. Furthermore, if females accept matings more than once, ejaculates from different males compete for fertilization (sperm competition), which confronts males with the decision of how to allocate their reproductive resources to each mating event. Although most existing models have examined either female mating frequency or male ejaculate allocation while assuming fixed levels of the opposite sex's strategies, these strategies are likely to coevolve. To investigate how the interaction of the two sexes' strategies is influenced by the level of sperm limitation in the population, we developed models in which females adjust their number of allowable matings and males allocate their ejaculate in each mating. Our model predicts that females mate only once or less than once at an even sex ratio or in an extremely female-biased condition, because of female resistance and sperm limitation in the population, respectively. However, in a moderately female-biased condition, males favor partitioning their reproductive budgets across many females, whereas females favor multiple matings to obtain sufficient sperm, which contradicts the predictions of most existing models. We discuss our model's predictions and relationships with the existing models and demonstrate applications for empirical findings.
Assuntos
Comportamento Competitivo/fisiologia , Fertilização/fisiologia , Razão de Masculinidade , Comportamento Sexual Animal/fisiologia , Espermatozoides/fisiologia , Animais , Evolução Biológica , Feminino , Fertilidade/fisiologia , Masculino , Modelos BiológicosRESUMO
Many animals take advantage of the shaded, humid, and protected environments in subcortical spaces, i.e., thin spaces under the loosened bark of dead trees. Permanent inhabitants of subcortical spaces often show specialized morphologies, such as a miniaturized or dorsoventrally flattened body. However, the evolutionary consequences of these specialized morphologies on behavioral, ecological, and life-history traits have been little studied. We studied the mating biology and anatomy of Platylabia major (usually placed in the family Anisolabididae), which is an obligate inhabitant of subcortical spaces with a paper-like flattened body, and compared them with those of two thicker, spongiphorid earwigs, Nesogaster amoenus and Paralabellula curvicauda. Mating trials in various settings showed that Pl. major requires thin spaces sandwiched by two planes to accomplish genital coupling and insemination. In contrast, the thicker species, although also frequently found in subcortical spaces, could mate on a single horizontal plane due to the ability of the male to twist its abdomen through approximately 180°. Examination by micro-computed tomography and a reagent-based clearing technique revealed no substantive differences in the configuration of mid-abdominal musculature between the species. The dorsal and lateral muscles of Pl. major, which are almost parallel to the antero-posterior body axis for accommodation within the thin abdomen, seemed incapable of producing the power to twist the abdomen. The abdominal musculature conforms to a simple pattern in both male and female earwigs, which is repeated in each of the pregenital segments. We conclude that small differences in the range of motion of each abdominal segment can result in large differences in possible mating postures and positions. Surgical experiments also demonstrated that both right and left penises of Pl. major are competent and used for insemination with no lateral bias, as in most other earwigs with twin penises studied to date.
Assuntos
Insetos , Reprodução , Animais , Masculino , Microtomografia por Raio-X , Insetos/fisiologia , Pênis , Músculos Abdominais , NeópterosRESUMO
Dermaptera is a polyneopteran insect order that includes more than 2,000 described species, commonly known as earwigs, that mainly inhabit tropical, subtropical and warm temperate regions. Although 40 species have been found in Japan, their distribution and habitat preferences have remained ambiguous due to sample misidentification, particularly amongst immature specimens. To overcome this problem, we sequenced and analysed the DNA barcoding region of the mitochondrial cytochrome oxidase I gene (cox1) of dermapteran species recorded from Japan. Including publicly available data, 72.5% of known Japanese dermapteran species were subjected to molecular identification. We extensively sampled three wingless species of subfamily Anisolabidinae (Anisolabididae): Anisolabismaritima, Anisolabellamarginalis and Euborelliapallipes. Although these species exhibit similar habitat preferences as semi-synanthropes, A.maritima, a cosmopolitan species with the highest affinity to seashore, had significantly higher sequence diversity than the latter two species, which are considered endemic to East Asia. A similar trend was observed for (at least partly) winged cosmopolitan species of other families. Introgression with the congener Anisolabisseirokui is also suggested for A.maritima. Possible causes of the varying levels of sequence diversity are discussed.
RESUMO
A new earwig species of the genus Liparura Burr, 1907 of the family Forficulidae, namely L. chongqingensis sp. nov., is described from Chongqing, southwestern China. The new species is characterized by the male forceps basally approached to each other, and each with a small tooth protruding dorsad. A key to the species of Liparura is provided.
Assuntos
Insetos , Neópteros , Masculino , Animais , ChinaRESUMO
Euborellia (Anisolabididae: Anisolabidinae) is one of the most speciose genera of earwigs (Dermaptera), and its species-level classification is difficult. To settle the classification of brachypterous species with abbreviated tegmina recorded from East and Southeast Asia, we examined the morphology and reproductive isolation of three tentative Euborellia species, and analyzed the DNA barcoding region of the mitochondrial cytochrome oxidase subunit I (COI) gene. The observed complete reproductive isolation among the three Euborellia taxa and considerable differentiation in the COI sequences clearly show that each should be treated as a separate species. Based on morphology, distribution and the DNA sequence, we identify Euborellia sp. 1 of Malaysia as E.annulata (Fabricius), a circumtropical cosmopolitan with no records of a fully winged form. Samples from Ioto Island (= Iwo-jima Island: Ogasawara Islands, southern Japan) were also identified as this species. Euborellia sp. 3, from the main islands of Japan, was generally larger and lacked a Y-shaped pigmented area on the penis lobe, which is characteristic of Euborellia sp. 1. We propose reinstating E.pallipes (Shiraki) as the oldest name for this taxon. Euborellia sp. 2, even the brachypterous form, can be distinguished from these two species by its paler coloration (particularly the femora), ecarinate post-abdomen, and the shape of the male genitalia (parameres). We tentatively identify this species as E.philippinensis Srivastava based on the morphology of the brachypterous form, although the macropterous form cannot be distinguished from E.femoralis (Dohrn).
RESUMO
Brazilian sex-role reversed cave insects (genus Neotrogla) have a striking structure called the gynosome (or female penis), which deeply penetrates male vagina-like genitalia during copulation to receive nutritious semen. However, the protruding and retracting mechanisms of the female penis, including their evolutionary origin, are poorly understood. By using micro-computed tomography (µCT), we compared the genital morphology and musculature between species with a gynosome and others lacking this structure. As a result, we discovered two groups of muscles related to the protrusion and retraction of gynosomes. These muscles were also observed in species with non-protrusible prepenis. This suggests that evolution of these muscles preceded the acquisition of the protruding function of the gynosome, originally having a putative stimulatory function to receive nutritious semen. This intermediate stage probably allowed for the reversal of genital functions.
RESUMO
Klotho is an anti-aging, single-pass transmembrane protein found mainly in the kidney. Although aging is likely to be associated with DNA damage, the involvement of Klotho in protecting cells from DNA damage is still unclear. In this study, we examined DNA damage in human kidney cells and mouse kidney tissue after ionizing radiation (IR). The depletion and overexpression of Klotho in human kidney cells reduced and increased the cell survival rates after IR, respectively. The formation of γ-H2AX foci, representing DNA damage, was significantly elevated immediately after IR in cells with Klotho depletion and decreased in cells overexpressing Klotho. These results were confirmed in mouse renal tissues after IR. Quantification of DNA damage by a comet assay revealed that the Klotho knockdown significantly increased the amount of DNA damage immediately after IR, suggesting that Klotho protects chromosomal DNA from the induction of damage, rather than facilitating DNA repair. Consistent with this notion, Klotho was detected in both the nucleus and cytoplasm. In the nucleus, Klotho may serve to protect chromosomal DNA from damage, leading to its anti-aging effects.
Assuntos
Envelhecimento , Reparo do DNA , Histonas , Proteínas Klotho , Animais , Humanos , Camundongos , Envelhecimento/genética , DNA , Dano ao DNA , Histonas/metabolismo , Proteínas Klotho/genética , Proteínas Klotho/metabolismoRESUMO
To explore diversity of earwigs (Dermaptera) in different agricultural ecosystems of South India, an extensive taxonomic survey was conducted in 2020 during which an undescribed species of Diplatys was collected. Twenty-one species of the genus Diplatys (Diplatyidae, Diplatyinae) have been reported to date from India, of which six species are known from Karnataka, South India. Based on a male specimen collected from a sugarcane field in Karnataka, a new species, Diplatyssahyadriensis sp. nov., is described as the twenty-second species of this genus from India. A revised key to the males of Diplatys species from India and Sri Lanka is provided. This new record adds to the known species diversity in the Sahyadri Ranges of the Western Ghats in Shivamogga District, Karnataka, part of the Southern Plateau and Hills agro-climatic region of India.
RESUMO
BACKGROUND: The ovipositors of some insects are external female genitalia, which have their primary function to deliver eggs. Drosophila suzukii and its sibling species D. subpulchrella are known to have acquired highly sclerotized and enlarged ovipositors upon their shifts in oviposition sites from rotting to ripening fruits. Inside the ovipositor plates, there are scale-like polarized protrusions termed "oviprovector scales" that are likely to aid the mechanical movement of the eggs. The size and spatial distribution of the scales need to be rearranged following the divergence of the ovipositors. In this study, we examined the features of the oviprovector scales in D. suzukii and its closely related species. We also investigated whether the scales are single-cell protrusions comprised of F-actin under the same conserved gene regulatory network as the well-characterized trichomes on the larval cuticular surface. RESULTS: The oviprovector scales of D. suzukii and D. subpulchrella were distinct in size and spatial arrangement compared to those of D. biarmipes and other closely related species. The scale numbers also varied greatly among these species. The comparisons of the size of the scales suggested a possibility that the apical cell area of the oviprovector has expanded upon the elongation of the ovipositor plates in these species. Our transcriptome analysis revealed that 43 out of the 46 genes known to be involved in the trichome gene regulatory network are expressed in the developing female genitalia of D. suzukii and D. subpulchrella. The presence of Shavenbaby (Svb) or svb was detected in the inner cavity of the developing ovipositors of D. melanogaster, D. suzukii, and D. subpulchrella. Also, shavenoid (sha) was expressed in the corresponding patterns in the developing ovipositors and showed differential expression levels between D. suzukii and D. subpulchrella at 48 h APF. CONCLUSIONS: The oviprovector scales have divergent size and spatial arrangements among species. Therefore, these scales may represent a rapidly diversifying morphological trait of the female reproductive tract reflecting ecological contexts. Furthermore, our results showed that the gene regulatory network underlying trichome formation is also utilized to develop the rapidly evolving trichomes on the oviprovectors of these flies.
Assuntos
Drosophila , Tricomas , Animais , Evolução Biológica , Drosophila/genética , Drosophila melanogaster , Feminino , Redes Reguladoras de Genes , Genitália Feminina , Tricomas/genéticaRESUMO
Some diopsid flies have sexually dimorphic eye stalks that are assumed to require considerable nutrition for growth but are advantageous in competition and courtship. According to the handicap theory, the eye span in some dimorphic species serves as a reliable signal of individual quality to an opponent. However, it is not well understood how well eye span represents energy source storage. In this study, we focused on two species: Sphyracephala detrahens, which has weak dimorphism, and Cyrtodiopsis dalmanni, which has moderate dimorphism. We found that the eye stalks of the former species contained more fat bodies than those of the latter species. When the flies were starved, the fat body cells in the eye stalks underwent autophagy. A strong positive correlation was consistently found between eye span and starvation tolerance for S. detrahens, while a weak correlation was found for C. dalmanni. Furthermore, starvation decreased the contest winning rate between S. detrahens pairs with similar eye spans. These findings suggest that the presentation of resource holding potential may be larger than the actual storage ability and that the fidelity of nutritional storage signaling varies; the signal presented by S. detrahens is more reliable than that presented by C. dalmanni.
Assuntos
Dípteros , Animais , Olho , Cabeça , Caracteres SexuaisRESUMO
In Egypt, only five species of Dermaptera (earwigs) have been reported. Based on both the morphological and molecular data of the earwig samples collected from a bakery in Beni-Suef, Egypt, we identified the species as Marava arachidis (Spongiphoridae), a cosmopolitan species with no prior records in Egypt. The current study was designed to analyze its predation capability on newly emerged eggs and larvae of the Rhipicephalus annulatus tick. A laboratory functional response study was set up by applying a predation test with various predator-prey ratios as treatments. This experiment was applied using the undefined mix of collected earwigs and the laboratory-collected eggs and the larvae of R. annulatus. The laboratory results showed that the mean number of predated tick eggs was 18.64 ± 11.18 in 24 h under the highest predator-prey ratio (1:10) examined, accompanied by 12.04 ± 4.38 broken but unconsumed eggs. Moreover, M. arachidis predated an average of 12.32 ± 9.07 tick larvae per day. In contrast, the mean dead larvae increased to 38.4 ± 2.30 per day with the highest predator density (1:10). The number of eggs and larvae consumed increased with the predator density. A linear relationship was detected between earwig density and the consumption rates of tick eggs (R2 = 0.99; p = 0.0001) and larvae (R2 = 0.96; p = 0.003). In conclusion, M. arachidis was first recorded in Egypt. This earwig has predation capability on R. annulatus tick eggs and larvae.
RESUMO
The model organism Drosophila melanogaster has become a focal system for investigations of rapidly evolving genital morphology as well as the development and functions of insect reproductive structures. To follow up on a previous paper outlining unifying terminology for the structures of the male terminalia in this species, we offer here a detailed description of the female terminalia of D. melanogaster. Informative diagrams and micrographs are presented to provide a comprehensive overview of the external and internal reproductive structures of females. We propose a collection of terms and definitions to standardize the terminology associated with the female terminalia in D. melanogaster and we provide a correspondence table with the terms previously used. Unifying terminology for both males and females in this species will help to facilitate communication between various disciplines, as well as aid in synthesizing research across publications within a discipline that has historically focused principally on male features. Our efforts to refine and standardize the terminology should expand the utility of this important model system for addressing questions related to the development and evolution of animal genitalia, and morphology in general.