Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Anal Chem ; 95(25): 9548-9554, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37253150

RESUMO

The majority of biological reactions in the cytoplasm of living cells occur via enzymatic cascade reactions. To achieve efficient enzyme cascade reactions mimicking the proximity conditions of enzymes in the cytoplasm, the proximity of each enzyme, creating a high local concentration of proteins, has been recently investigated using the conjugation of synthetic polymer molecules, proteins, and nucleic acids. Although there have been methodologies reported for the complex formation and enhanced activity of cascade reactions due to the proximity of each enzyme using DNA nanotechnology, one pair of the enzyme (GOx and HRP) complex is only assembled by the mutual independence of various shapes of the DNA structure. This study reports the network formation of three enzyme complexes assembled by a triple-branched DNA structure as a unit, thus enabling the reversible formation and dispersion of the three enzyme complex networks using single-stranded DNA, RNA, and enzymes. It was found that the activities of the three enzyme cascade reactions in the enzyme-DNA complex network were controlled by formation and dispersion of the three enzyme complex networks, due to the proximity of each enzyme with the enzyme-DNA complex network. Furthermore, three micro RNA sequences for breast cancer biomarkers were successfully detected using an enzyme-DNA complex network integrated with DNA computing. Overall, the reversible formation and dispersion of the enzyme-DNA complex network through the external stimulation of biomolecules and DNA computing provide a novel platform for controlling the production amount, diagnosis, theranostics, and biological or environmental sensing.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Humanos , Feminino , DNA/química , DNA de Cadeia Simples , Nanotecnologia/métodos , Complexos Multienzimáticos/metabolismo
2.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108393

RESUMO

Membrane proteins play an important role in key cellular functions, such as signal transduction, apoptosis, and metabolism. Therefore, structural and functional studies of these proteins are essential in fields such as fundamental biology, medical science, pharmacology, biotechnology, and bioengineering. However, observing the precise elemental reactions and structures of membrane proteins is difficult, despite their functioning through interactions with various biomolecules in living cells. To investigate these properties, methodologies have been developed to study the functions of membrane proteins that have been purified from biological cells. In this paper, we introduce various methods for creating liposomes or lipid vesicles, from conventional to recent approaches, as well as techniques for reconstituting membrane proteins into artificial membranes. We also cover the different types of artificial membranes that can be used to observe the functions of reconstituted membrane proteins, including their structure, number of transmembrane domains, and functional type. Finally, we discuss the reconstitution of membrane proteins using a cell-free synthesis system and the reconstitution and function of multiple membrane proteins.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Bicamadas Lipídicas/química , Membranas Artificiais , Lipossomos/química
3.
Neuropathology ; 42(4): 323-328, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35723635

RESUMO

Paragonimiasis is a parasitic disease caused by Paragonimus westermani infection, and migration to the brain results in cerebral paragonimiasis. Cerebral paragonimiasis is now extremely rare, but a few cases are still reported. A 48-year-old Japanese woman presented with right-hand convulsion, right-hand numbness, sputum, and fatigue. Chest computed tomography demonstrated multiple nodular lesions, and head computed tomography revealed a hemorrhagic lesion in the left motor cortex. Magnetic resonance imaging revealed multiple small ring-shaped lesions with surrounding edema. Laboratory evaluation demonstrated peripheral eosinophilia. We considered eosinophilic granulomatosis with polyangiitis and started steroid treatment as a diagnostic therapy since we wanted to avoid cerebral lesion biopsy if possible. However, the patient underwent craniotomy surgery after steroid treatment for four months because a new intracerebral mass lesion had appeared. Trematode eggs were detected in the sample, and the final diagnosis was cerebral paragonimiasis. The patient was successfully treated with praziquantel. Cerebral paragonimiasis is extremely rare but should be considered in the differential diagnosis if atypical intracranial hemorrhage and peripheral eosinophilia are observed.


Assuntos
Síndrome de Churg-Strauss , Granulomatose com Poliangiite , Paragonimíase , Erros de Diagnóstico , Feminino , Humanos , Pessoa de Meia-Idade , Paragonimíase/diagnóstico , Paragonimíase/parasitologia , Paragonimíase/patologia , Esteroides
4.
Small ; 16(49): e2005550, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33191570

RESUMO

An artificial cell membrane is applied to study the pore formation mechanisms of bacterial pore-forming toxins for therapeutic applications. Electrical monitoring of ionic current across the membrane provides information on the pore formation process of toxins at the single pore level, as well as the pore characteristics such as dimensions and ionic selectivity. However, the efficiency of pore formation detection largely depends on the encounter probability of toxin to the membrane and the fragility of the membrane. This study presents a bilayer lipid membrane array that parallelizes 4 or 16 sets of sensing elements composed of pairs of a membrane and a series electrical resistor. The series resistor prevents current overflow attributed to membrane rupture, and enables current monitoring of the parallelized membranes with a single detector. The array system shortens detection time of a pore-forming protein and improves temporal stability. The current signature represents the states of pore formation and rupture at respective membranes. The developed system will help in understanding the toxic activity of pore-forming toxins.


Assuntos
Toxinas Bacterianas , Bicamadas Lipídicas , Membrana Celular
5.
Anal Chem ; 90(17): 10217-10222, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30091903

RESUMO

MicroRNAs have critical roles in a number of serious diseases and, as a result, are of major interest as clinical diagnostic targets. Conventionally, microRNAs are collected from blood and urine samples and are measured by either quantitative reverse-transcription polymerase chain reaction or microarray. Recently, nanopore sensing techniques have been applied for measuring microRNAs at the single-molecule level. However, existing techniques are technically complex, needing several tools and requiring purification and/or labeling of microRNA samples prior to use. Here we report a method for microRNA detection in a simple procedure requiring neither purification nor labeling. This system utilizes magnetic beads anchored with DNA and nanopores on a liposome membrane. In the presence of the target microRNA, it forms a duplex with complementary DNA, which is then cleaved by a duplex-specific nuclease (DSN). The cleaved DNA, which harbors a liposome on its terminus, is subsequently released from the magnetic bead, fuses to the lipid bilayer on chip, and emits an electrical signal derived from the formation of a nanopore. Because of a property of the DSN, the signals derived from microRNAs are expected to be amplified in an isothermal reaction. Our system possesses the specificity to detect target microRNAs from mixtures containing >106 different microRNA sequences and readily uses blood or urine samples. Although the limit of detection is above 10 nM and needs to be improved for practical diagnosis, because purification and labeling are not required, the presented system proposes a possible schematic for the development of easy and on-site diagnosis.


Assuntos
Lipossomos , Magnetismo , Membranas Artificiais , MicroRNAs/isolamento & purificação , Nanoporos , Humanos , MicroRNAs/química
6.
Small ; 12(25): 3366-73, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27185344

RESUMO

A vertical confocal observation system capable of high-resolution observation of intracellular structure is demonstrated. The system consists of magnet-active microplates to rotate, incline, and translate single adherent cells in the applied magnetic field. Appended to conventional confocal microscopes, this system enables high-resolution cross-sectional imaging with single-molecule sensitivity in single scanning.


Assuntos
Desenho de Equipamento , Microscopia Confocal/instrumentação , Humanos , Magnetismo
7.
Analyst ; 140(16): 5557-62, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26153566

RESUMO

This paper describes a simple microfluidic device that can generate nonlinear concentration gradients. We changed the "width" of channels that can drastically shorten the total microfluidic channel length and simplify the microfluidic network design rather than the "length" of channels. The logarithmic concentration gradients generated by the device were in good agreement with those obtained by simulation. Using this device, we evaluated a probable IC50 value of the ABC transporter proteins by the competitive transport assays at five different logarithmic concentrations. This probable IC50 value was in good agreement with an IC50 value (0.92 µM) obtained at the diluted concentrations of seven points.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Bioensaio/métodos , Concentração Inibidora 50 , Técnicas Analíticas Microfluídicas/métodos , Quinidina/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos
8.
Proc Natl Acad Sci U S A ; 109(20): 7811-6, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22547827

RESUMO

CD40L is excessively produced in both human and murine lupus and plays a role in lupus pathogenesis. To address how excess CD40L induces autoantibody production, we crossed CD40L-transgenic mice with the anti-DNA H-chain transgenic mouse lines 3H9 and 56R, well-characterized models for studying B-cell tolerance to nuclear antigens. Excess CD40L did not induce autoantibody production in 3H9 mice in which anergy maintains self-tolerance, nor did it perturb central tolerance, including deletion and receptor editing, of anti-DNA B cells in 56R mice. In contrast, CD40L/56R mice restored a large number of marginal zone (MZ) B cells reactive to Sm/ribonucleoprotein (RNP) and produced autoantibody, whereas these B cells were deleted by apoptosis in MZ of 56R mice. Thus, excess CD40L efficiently blocked tolerance of Sm/RNP-reactive MZ B cells, leading to production of anti-Sm/RNP antibody implicated in the pathogenesis of lupus. These results suggest that self-reactive B cells such as anti-Sm/RNP B cells, which somehow escape tolerance in the bone marrow and migrate to MZ, are tolerized by apoptotic deletion in MZ and that a break in this tolerance may play a role in the pathogenesis of lupus.


Assuntos
Apoptose/imunologia , Autoanticorpos/biossíntese , Linfócitos B/imunologia , Tolerância Imunológica/imunologia , Lúpus Eritematoso Sistêmico/fisiopatologia , Animais , Anticorpos Antinucleares/imunologia , Anticorpos Antinucleares/metabolismo , Autoanticorpos/imunologia , Linfócitos B/metabolismo , Ligante de CD40/genética , Ligante de CD40/imunologia , Ácido Clodrônico , Cruzamentos Genéticos , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imuno-Histoquímica , Indóis , Lipossomos , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Camundongos Transgênicos
9.
Small ; 10(5): 912-21, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24123995

RESUMO

An approach for manipulating single adherent cells is developed that is integrated with an enzymatic batch release. This strategy uses an array of releasable microfabricated mobile substrates, termed microplates, formed from a biocompatible polymer, parylene. A parylene microplate array of 10-70 µm in diameter can be formed on an alginate hydrogel sacrificial layer by using a standard photolithographic process. The parylene surfaces are modified with fibronectin to enhance cell attachment, growth, and stretching. To load single cells onto these microplates, cells are initially placed in suspension at an optimized seeding density and are allowed to settle, stretch, and grow on individual microplates. The sacrificial layer underneath the microplate array can be dissolved on a time-scale of several seconds without cytotoxicity. This system allows the inspection of selected single adherent cells. The ability to assess single cells while maintaining their adhesive properties will broaden the examination of a variety of attributes, such as cell shape and cytoskeletal properties.


Assuntos
Enzimas/metabolismo , Fibroblastos/citologia , Polímeros/química , Análise de Célula Única/instrumentação , Xilenos/química , Animais , Adesão Celular , Linhagem Celular , Fibroblastos/parasitologia , Humanos , Masculino , Camundongos , Ratos , Toxoplasma/fisiologia
10.
Biotechnol Lett ; 36(6): 1253-61, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24563316

RESUMO

Recombinant transmembrane adenylate cyclase (AC) was incorporated into membranes of giant liposomes using membrane fusion between liposomes and baculovirus-budded virus (BV). AC genes were constructed into transfer vectors in a form fused with fluorescent protein or polyhistidine at the C-terminus. The recombinant BVs were collected by ultracentrifugation and AC expression was verified using western blotting. The BVs and giant liposomes generated using gentle hydration were fused under acidic conditions; the incorporation of AC into giant liposomes was demonstrated by confocal laser scanning microscopy through the emission of fluorescence from their membranes. The AC-expressing BVs were also fused with liposomes containing the substrate (ATP) with/without a specific inhibitor (SQ 22536). An enzyme immunoassay on extracts of the sample demonstrated that cAMP was produced inside the liposomes. This procedure facilitates direct introduction of large transmembrane proteins into artificial membranes without solubilization.


Assuntos
Adenilil Ciclases/metabolismo , Baculoviridae/enzimologia , Lipossomos/metabolismo , Fusão de Membrana , Vírion/enzimologia , Adenilil Ciclases/genética , Baculoviridae/genética , AMP Cíclico/metabolismo , Técnicas Imunoenzimáticas , Lipossomos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
ACS Omega ; 9(5): 5911-5918, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343955

RESUMO

Giant unilamellar vesicles (GUVs) integrated with membrane proteins (proteo-GUVs) are attractive tools for visualizing membrane protein functions such as enzyme reactions and molecular transportation. In the dehydration-rehydration method, one of the methods used to form proteo-GUVs, they are formed by using a dried film containing phospholipids and membrane proteins through rehydration with an alternating current electric field and a supporting gel. However, these methods make it difficult to form proteo-GUVs under physiological salt concentration and charged phospholipid conditions or carry the risk of gel contamination of lipid membranes. Therefore, proteo-GUVs formed by these rehydration methods may be harmful to membrane proteins. Here, we propose a method for the formation of proteo-GUVs containing physiological salt concentrations and negatively charged phospholipids that do not require an electric field and a supporting gel. To investigate the molecular transport of modified outer membrane protein G (OmpG), OmpG-giant unilamellar vesicles (GUVs) and OmpG-large unilamellar vesicles (LUVs) were formed. The structure and function of different mutants reconstituted into LUVs were evaluated by using circular dichroism spectroscopy and electrophysiological measurements. In addition, the molecular transport of OmpG in GUVs was evaluated by monitoring the Ca2+ influx into GUVs and fluorescent molecule leakage from GUVs through OmpG nanopores. We found that the amount of Ca2+ influx into GUVs through the OmpG nanopores depended on the pore size of OmpG. Our method for forming proteo-GUVs can be applied for the functional evaluation of ß-barrel porin and in biological sensors using ß-barrel porin.

12.
ACS Appl Mater Interfaces ; 16(17): 21623-21632, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38594642

RESUMO

Giant lipid vesicles composed of a lipid bilayer form complex membrane structures and enzyme network reactions that can be used to construct well-defined artificial cell models based on microfluidic technologies and synthetic biology. As a different approach to cell-mimicking systems, we formed an asymmetric lipid-amphiphilic protein (oleosin) vesicle containing a lipid and an oleosin monolayer in the outer and inner leaflets, respectively. These asymmetric vesicles enabled the reconstitution and function of ß-barrel types of membrane proteins (OmpG) and the fission of vesicles stimulated by lysophospholipids. These applications combine the advantages of the high stability of lipids and oleosin leaflets in asymmetric lipid-oleosin vesicles. In this study, to evaluate the versatility of this asymmetric lipid-oleosin vesicle, the molecular transport of the mechanosensitive channel of large conductance (MscL) with an α-helix was evaluated by changing the tension of the asymmetric vesicle membrane with lysophospholipid. A nanopore of MscL assembled as a pentamer of MscLs transports small molecules of less than 10 kDa by sensing physical stress at the lipid bilayer. The amount and maximum size of the small molecules transported via MscL in the asymmetric lipid-oleosin vesicles were compared to those in the lipid vesicles. We revealed the existence of the C- and N-terminal regions (cytoplasmic side) of MscL on the inner leaflet of the asymmetric lipid-oleosin vesicles using an insertion direction assay. Furthermore, the change in the tension of the lipid-oleosin membrane activated the proteins in these vesicles, inducing their transportation through MscL nanopores. Therefore, asymmetric lipid-oleosin vesicles containing MscL can be used as substrates to study the external environment response of complex artificial cell models.


Assuntos
Bicamadas Lipídicas , Bicamadas Lipídicas/química , Canais Iônicos/química , Canais Iônicos/metabolismo , Lisofosfolipídeos/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo
13.
Sci Rep ; 14(1): 2852, 2024 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310141

RESUMO

To develop artificial cell models that mimic living cells, cell-sized lipid vesicles encapsulating cell-free protein synthesis (CFPS) systems are useful for protein expressions or artificial gene circuits for vesicle-vesicle communications. Therefore, investigating the transcriptional and translational properties of CFPS systems in lipid vesicles is important for maximizing the synthesis and functions of proteins. Although transcription and translation using CFPS systems inside lipid vesicles are more important than that outside lipid vesicles, the former processes are not investigated by changing the lipid composition of lipid vesicles. Herein, we investigated changes in transcription and translation using CFPS systems inside giant lipid vesicles (approximately 5-20 µm in diameter) caused by changing the lipid composition of lipid vesicles containing neutral, positively, and negatively charged lipids. After incubating for 30 min, 1 h, 2 h, and 4 h, the transcriptional and translational activities in these lipid vesicles were determined by detecting the fluorescence intensities of the fluorogenic RNA aptamer on the 3'-untranslated region of mRNA (transcription) and the fluorescent protein sfCherry (translation), respectively. The results revealed that transcriptional and translational activities in a lipid vesicle containing positively charged lipids were high when the protein was synthesized using the CFPS system inside the lipid vesicle. Thus, the present study provides an experimental basis for constructing complex artificial cell models using bottom-up approaches.


Assuntos
Lipídeos , Proteínas , Fluorescência
14.
Anal Chem ; 85(22): 10913-9, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24134641

RESUMO

This paper describes the rapid and repetitive formation of planar lipid bilayers via a mechanical droplet contact method for high-throughput ion channel analysis. In this method, first, an aqueous droplet delivered in a lipid-in-oil solution is mechanically divided into two small droplets. Second, the two small droplets contact each other, resulting in the lipid bilayer formation. Third, an ion channel is immediately reconstituted into the bilayer and the transmembrane current signals are measured. By repeating this procedure, massive data sets of the channel signals can be obtained. This method allowed us to perform statistical analysis of α-hemolysin conductance (n = 256 within 30 min) and channel inhibition experiments by contacting different types of the droplets in a short time frame.


Assuntos
Membrana Celular/metabolismo , Eletrofisiologia/métodos , Proteínas Hemolisinas/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Canais Iônicos/metabolismo , Bicamadas Lipídicas/química , Óleos/química , Proteínas Hemolisinas/química , Humanos , Nanoporos
15.
iScience ; 26(3): 106086, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36843838

RESUMO

Lipid vesicles, which mimic cell membranes in structure and components, have been used to study the origin of life and artificial cell construction. A different approach to developing cell-mimicking systems focuses on the formation of protein- or polypeptide-based vesicles. However, micro-sized protein vesicles that are similar in membrane dynamics to the cell and that reconstitute membrane proteins are difficult to form. In this study, we generated cell-sized asymmetric phospholipid-amphiphilic protein (oleosin) vesicles that allow the reconstitution of membrane proteins and the growth and fission of vesicles. These vesicles are composed of a lipid membrane on the outer leaflet and an oleosin membrane on the inner leaflet. Further, we elucidated a mechanism for the growth and fission of cell-sized asymmetric phospholipid-oleosin vesicles by feeding phospholipid micelles. Our asymmetric phospholipid-oleosin vesicles with the advantages of the lipid leaflet and the protein leaflet will potentially promote understanding of biochemistry and synthetic biology.

16.
ACS Appl Bio Mater ; 6(2): 828-835, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36708326

RESUMO

The development of stimuli-responsive synthetic channels that open and close in response to physical and chemical changes in the surrounding environment has attracted attention because of their potential bioapplications such as sensing, drug release, antibiotics, and molecular manipulation tools to control membrane transport in cells. Metal coordination is ideal as a stimulus for stimuli-responsive channels because it allows for reversible gating behavior through the addition and removal of metal ions and fine-tuning of channel structure through coordination geometry defined by the type of the metal ion and ligand. We have previously reported on transition metal-ion dependent ion permeability control of Amphotericin B (AmB) modified with a metal coordination site, 2,2'-bipyridine ligand (bpy-AmB). AmB is one of the polyene macrolide antibiotics, and it is known that the interaction between AmB and ergosterol molecules is required for AmB channel formation. In contrast, the Cu2+ coordination to the bpy moiety of bpy-AmB induces formation of Ca2+ ion-permeable channels in the ergosterol-free POPC membrane. However, the details of bpy-AmB properties such as channel stability, ion selectivity, pore size, and the effect of ergosterol on channel formation remain unclear. Here, we investigate bpy-AmB channels triggered by transition metal coordination in POPC or ergosterol-containing POPC liposomes using an HPTS assay, electrophysiological measurements, and time-resolved UV-vis spectral measurements. These analyses reveal that bpy-AmB channels triggered by Cu2+ ions are more stable and have larger pore sizes than the original AmB channels and enable efficient permeation of various cations. We believe that our channel design will lead to the construction of metal coordination-triggered synthetic ion channels.


Assuntos
2,2'-Dipiridil , Anfotericina B , Anfotericina B/farmacologia , Anfotericina B/química , 2,2'-Dipiridil/farmacologia , Ligantes , Canais Iônicos/química , Antibacterianos
17.
Sci Rep ; 12(1): 2376, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149747

RESUMO

Outer membrane proteins (OMPs), located on the outer membrane of gram-negative bacteria, have a ß-strand structure and form nanopores, which allow passage of ions, sugars, and small molecules. Recently, OMPs have been used as sensing elements to detect biological molecules. OMPs are normally expressed and purified from Escherichia coli (E. coli). Although the cell-free synthesis of OMPs, such as OmpA and OmpG, is achieved in the presence of liposomes and periplasmic chaperones, the amount of OmpA and OmpG incorporated into the nano-sized liposomes is not clear. In this study, after in vitro translation, the incorporation of OmpG into purified nano-sized liposomes with various lipid compositions was investigated. Liposomes containing the synthesized OmpG were purified using a stepwise sucrose density gradient. We report that liposomes prepared with the E. coli lipid extract (PE/PG) had the highest amount of OmpG incorporated compared to liposomes with other lipid compositions, as detected by recording the current across the OmpG containing liposomes using the patch clamp technique. This study reveals some of the requirements for the insertion and refolding of OMPs synthesized by the in vitro translation system into lipid membranes, which plays a role in the biological sensing of various molecules.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipossomos/metabolismo , Porinas/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Lipossomos/química , Modelos Moleculares , Porinas/química , Porinas/genética , Biossíntese de Proteínas
18.
ACS Synth Biol ; 11(11): 3836-3846, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36197293

RESUMO

Cell-penetrating peptides (CPPs) play important roles in directly delivering biomolecules, such as DNA, proteins, and peptides, into living cells. In artificial lipid membranes, such as planar lipid bilayers, the direct membrane translocation of ß-galactosidase via Pep-1 (one of the CPPs) is dependent upon a voltage gradient between the inner and outer leaflets of the lipid membranes. Giant unilamellar vesicles (GUVs) with asymmetric lipid distributions, which are recently generated using microfluidic technologies, can be observed by optical microscopy. Therefore, interactions between CPPs and asymmetric lipid bilayers in different kinds of lipids and the translocation mechanism of proteins via CPPs into GUVs can be investigated at the level of a single asymmetric GUV. This CPP-based system for transporting proteins into GUVs will be applied to control the start of enzyme reactions in GUVs. This study aimed to explore efficient protein translocation into GUVs via CPP and demonstrate that enzymatic reactions start in GUVs using a CPP-mediated direct translocation. The interactions and the enzyme reactions between the CPP (Pep-1 or penetratin)-DNase I complexes and the asymmetric or symmetric GUV membranes containing the negatively or neutrally charged lipids were observed by confocal laser-scanning microscopy. The asymmetric GUVs containing phosphatidylserine (PS) in the inner leaflet showed efficient DNase I translocation into GUVs via penetratin. Finally, the formation of a cross-linked actin network was observed in asymmetric PS GUVs incubated with Pep-1-streptavidin complexes. The CPP-mediated direct translocation can contribute to developing artificial cell models with the capacity to control the initiation of enzymatic reactions.


Assuntos
Peptídeos Penetradores de Células , Lipossomas Unilamelares , Lipossomas Unilamelares/metabolismo , Peptídeos Penetradores de Células/metabolismo , Bicamadas Lipídicas/metabolismo , Transporte Proteico , Desoxirribonuclease I/metabolismo
19.
Biochim Biophys Acta ; 1798(9): 1625-31, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20493165

RESUMO

We assayed fusion events between giant unilamellar vesicles (GUVs) and budded viruses (BVs) of baculovirus (Autographa californica nucleopolyhedrovirus), the envelopes of which have been labeled with the fluorescent dye Alexa Fluor 488. This involves observing the intensity of fluorescence emitted from the lipid bilayer of single GUVs after fusion using laser scanning microscopy. Using this assay system, we found that fusion between single GUVs and BV envelopes was significantly enhanced at around pH 5.0-6.0, which suggests that: (1) envelope glycoprotein GP64-mediated membrane fusion within the endosome of insect cells was reproduced in our artificial system; (2) acidic phospholipids in GUVs are necessary for this fusion, which are in agreement with the previous results with conventional small liposomes including large unilamellar vesicles and multilamellar vesicles; and (3) the efficiency of fusion is significantly affected by membrane properties that can be modulated by adding cholesterol to GUV lipid bilayers. In addition, the microscopic observation of BV-fused single GUVs showed that a weak interaction occurred between BVs and GUVs containing dioleoylphosphatidylserine at pH 6.0-6.5, and components of BV envelopes were unevenly distributed upon fusion with GUVs containing saturated phospholipid with cholesterol. We further demonstrated that when the recombinant membrane protein, adrenergic beta(2) receptor, was expressed on recombinant BV envelopes, the protein distribution on BV-fused GUVs was also affected by their lipid contents.


Assuntos
Fusão de Membrana , Nucleopoliedrovírus/fisiologia , Lipossomas Unilamelares/química , Colesterol/química , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Microscopia Confocal , Fosfolipídeos/química
20.
ACS Synth Biol ; 10(8): 1837-1846, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34258991

RESUMO

Giant lipid vesicles are used to study artificial cell models, as well as the encapsulation of biomolecules, and the reconstitution of membrane proteins on these vesicles. Recently, complex reactions in giant vesicles have been controlled by reconstituting numerous kinds of biomolecules. However, it is challenging to generate giant lipid vesicles containing a diverse set of proteins at concentrations sufficient to ensure proper functioning. Here, we describe an artificial cell model showing dual functions of small molecule transportation and small vesicle budding, using a dual functional membrane protein (transportation and phosphatase activity) called the outer membrane phospholipase (OmpLA). To the best of our knowledge, we have revealed for the first time the transportation of ions or small molecules through OmpLA on the charged lipid bilayer. The lipid composition controlled the orientation of OmpLA through proteinase K digestion. Finally, OmpLA enzyme activity of phospholipid hydrolysis caused the budding of small vesicles.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Escherichia coli/química , Bicamadas Lipídicas/química , Fosfolipases A1/química , Lipossomos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa