Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Am Chem Soc ; 146(3): 2043-2053, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38214997

RESUMO

Herein, we demonstrate a working prototype of a conjugated proton crane, a reversible tautomeric switching molecule in which truly intramolecular long-range proton transfer occurs in solution at room temperature. The system consists of a benzothiazole rotor attached to a 7-hydroxy quinoline stator. According to the experimental and theoretical results, the OH proton is delivered under irradiation to the quinolyl nitrogen atom through a series of consecutive proton transfer and twisting steps. The use of a rigid rotor prevents undesired side processes that decrease the switching performance in previously described proton cranes and provides an unprecedented switching efficiency and fatigue resistance. The newly designed system confirms the theoretical concept for the application of proton transfer-initiated intramolecular twisting as the switching mechanism, developed more than 10 years ago, and provides unique insights for the further development of tautomeric molecular switches and motors, molecular logic gates, and new molecular-level energy storage systems.

2.
Chemistry ; 29(58): e202301815, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37458527

RESUMO

We describe a concise synthetic strategy for the preparation of heterocyclic [9]helicenes and a simple preparative-scale protocol for the optical resolution of the resulting M- and P-enantiomers. The helicenes were characterized by single-crystal X-ray diffraction along with a range of spectroscopic and computational techniques. A fluorescence quantum yield of up to 65 % was observed, and the chiroptical properties of both M- and P-helicenes revealed large dissymmetry factors. The circularly polarized luminescence brightness reaches up to 17 M-1 cm-1 , as measured experimentally and verified computationally, which makes this the highest circularly polarized luminescence brightness among heterocyclic helicenes. We describe how chiroptical properties (both circular dichroism and circularly polarized luminescence) can be described and predicted using quantum chemical calculations. The synthetic approach also reveals by-products that originate from internal oxidation reactions, presumably mediated by the close proximity of the π-surfaces in the helicene structure.

3.
Crit Rev Food Sci Nutr ; : 1-19, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37203933

RESUMO

Antibiotic resistance is a significant public health issue, causing illnesses that were once easily treatable with antibiotics to develop into dangerous infections, leading to substantial disability and even death. To help fight this growing threat, scientists are developing new methods and techniques that play a crucial role in treating infections and preventing the inappropriate use of antibiotics. These effective therapeutic methods include phage therapies, quorum-sensing inhibitors, immunotherapeutics, predatory bacteria, antimicrobial adjuvants, haemofiltration, nanoantibiotics, microbiota transplantation, plant-derived antimicrobials, RNA therapy, vaccine development, and probiotics. As a result of the activity of probiotics in the intestine, compounds derived from the structure and metabolism of these bacteria are obtained, called postbiotics, which include multiple agents with various therapeutic applications, especially antimicrobial effects, by using different mechanisms. These compounds have been chosen in particular because they don't promote the spread of antibiotic resistance and don't include substances that can increase antibiotic resistance. This manuscript provides an overview of the novel approaches to preventing antibiotic resistance with emphasis on the various postbiotic metabolites derived from the gut beneficial microbes, their activities, recent related progressions in the food and medical fields, as well as concisely giving an insight into the new concept of postbiotics as "hyperpostbiotic".

4.
Biotechnol Appl Biochem ; 70(3): 1320-1331, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36588392

RESUMO

Streptococcus mutans is a main organism of tooth infections including tooth decay and periodontitis. The aim of this study was to assess the influence of sucrose and starch on biofilm formation and proteome profile of S. mutans ATCC 35668 strain. The biofilm formation was assessed by microtiter plating method. Changes in bacterial proteins after exposure to sucrose and starch carbohydrates were analyzed using matrix-assisted laser desorption/ionization mass spectrometry. The biofilm formation of S. mutans was increased to 391.76% in 1% sucrose concentration, 165.76% in 1% starch, and 264.27% in the 0.5% sucrose plus 0.5% starch in comparison to biofilm formation in the media without sugars. The abundance of glutamines, adenylate kinase, and 50S ribosomal protein L29 was increased under exposure to sucrose. Upregulation of lactate utilization protein C, 5-hydroxybenzimidazole synthase BzaA, and 50S ribosomal protein L16 was formed under starch exposure. Ribosome-recycling factor, peptide chain release factor 1, and peptide methionine sulfoxide reductase MsrB were upregulated under exposure to sucrose in combination with starch. The results demonstrated that the carbohydrates increase microbial pathogenicity. In addition, sucrose and starch carbohydrates can induce biofilm formation of S. mutans via various mechanisms such as changes in the expression of special proteins.


Assuntos
Amido , Sacarose , Amido/farmacologia , Amido/metabolismo , Sacarose/farmacologia , Sacarose/metabolismo , Streptococcus mutans , Proteoma/metabolismo , Biofilmes
5.
Magn Reson Chem ; 61(6): 356-362, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36882383

RESUMO

The three possible 1-(n-pyridinyl)butane-1,3-diones (nPM) have been synthesized. Structures, tautomerism, and conformations are investigated by means of DFT calculations. 1 H and 13 C NMR spectra are assigned, and deuterium isotope effects on 13 C chemical shifts have been measured. Analysis of the isotope effects leads to the equilibrium constants of the keto-enol tautomers. Some interesting differences are seen between the three compounds and the phenyl analogs. The isotope effects can also rank the hydrogen bonds of the compounds, with the one with nitrogen in the three positions of the pyridine ring as the weakest. Structures, conformers, energies, and NMR nuclear shieldings are calculated using DFT calculations at the B3LYP/6-311++G(d,p) level.

6.
Crit Rev Food Sci Nutr ; : 1-10, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36250549

RESUMO

Probiotics and postbiotics mechanisms of action and applications in early-onset colorectal cancer (EOCRC) prevention and treatment have significant importance but are a matter of debate and controversy. Therefore, in this review, we aimed to define the probiotics concept, advantages and limitations in comparison to postbiotics, and proposed mechanisms of anti-tumor action in EOCRC prevention and treatment of postbiotics. Biotics (probiotics, prebiotics, and postbiotics) could confer the health benefit by affecting the host gut microbiota directly and indirectly. The main mechanisms of action of probiotics in exerting anticancer features include immune system regulation, inhibition of cancer cell propagation, gut dysbiosis restoration, anticancer agents' production, gut barrier function renovation, and cancer-promoting agents' reduction. Postbiotics are suggested to have different mechanisms of action to restore eubiosis against EOCRC, including modulation of gut microbiota composition, gut microbial metabolites regulation, and intestinal barrier function improvement via different features such as immunomodulatory, anti-inflammatory, antioxidant, and anti-proliferative properties. A better understanding of postbiotics challenges and mechanism of action in therapeutic applications will allow us to sketch accurate trials in order to use postbiotics as bio-therapeutics in EOCRC.

7.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409325

RESUMO

The improvement of cancer chemotherapy remains a major challenge, and thus new drugs are urgently required to develop new treatment regimes. Curcumin, a polyphenolic antioxidant derived from the rhizome of turmeric (Curcuma longa L.), has undergone extensive preclinical investigations and, thereby, displayed remarkable efficacy in vitro and in vivo against cancer and other disorders. However, pharmacological limitations of curcumin stimulated the synthesis of numerous novel curcumin analogs, which need to be evaluated for their therapeutic potential. In the present study, we calculated the binding affinities of 50 curcumin derivatives to known cancer-related target proteins of curcumin, i.e., epidermal growth factor receptor (EGFR) and nuclear factor κB (NF-κB) by using a molecular docking approach. The binding energies for EGFR were in a range of −12.12 (±0.21) to −7.34 (±0.07) kcal/mol and those for NF-κB ranged from −12.97 (±0.47) to −6.24 (±0.06) kcal/mol, indicating similar binding affinities of the curcumin compounds for both target proteins. The predicted receptor-ligand binding constants for EGFR and curcumin derivatives were in a range of 0.00013 (±0.00006) to 3.45 (±0.10) µM and for NF-κB in a range of 0.0004 (±0.0003) to 10.05 (±4.03) µM, indicating that the receptor-ligand binding was more stable for EGFR than for NF-κB. Twenty out of 50 curcumin compounds showed binding energies to NF-κB smaller than −10 kcal/mol, while curcumin as a lead compound revealed free binding energies of >−10 kcal/mol. Comparable data were obtained for EGFR: 15 out of 50 curcumin compounds were bound to EGFR with free binding energies of <−10 kcal/mol, while the binding affinity of curcumin itself was >−10 kcal/mol. This indicates that the derivatization of curcumin may indeed be a promising strategy to improve targe specificity and to obtain more effective anticancer drug candidates. The in silico results have been exemplarily validated using microscale thermophoresis. The bioactivity has been further investigated by using resazurin cell viability assay, lactate dehydrogenase assay, flow cytometric measurement of reactive oxygen species, and annexin V/propidium iodide assay. In conclusion, molecular docking represents a valuable approach to facilitate and speed up the identification of novel targeted curcumin-based drugs to treat cancer.


Assuntos
Curcumina , Neoplasias , Curcumina/química , Receptores ErbB , Humanos , Proteínas I-kappa B , Ligantes , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Neoplasias/tratamento farmacológico
8.
Microb Pathog ; 157: 105003, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34087388

RESUMO

BACKGROUND: Enterococcus faecalis is a significant cause of nosocomial infections and other diseases, including endocarditis, bacteremia, and urinary tract infections. This microorganism forms biofilms to overcome difficult environmental conditions, such as lack of oxygen, lack of water, and the presence of antimicrobials. These biofilms make diseases difficult by changing their proteome contents, protecting the bacterium, and increasing their pathogenicity. This study aimed to evaluate gentamicin's effect on proteome changes and biofilm formation in E. faecalis. METHOD: Twenty-five clinical isolates and one standard isolate were selected for the experiments. A label-free/gel-free proteomic and microtiter plate techniques were used to study proteome changes and biofilm formation, respectively. RESULTS: Gentamicin significantly increased the biofilm formation in 62% of isolates and the rest of the isolates; no significant change was observed. The abundance of lactate utilization protein C, ribosomal RNA small subunit methyltransferase H, and protein translocase subunit SecA were increased. However, the abundances of proteins effective in cell division and metabolism, such as replication initiation protein and segregation and condensation protein A, were decreased. CONCLUSION: The present study's findings exhibited that antibiotics might have adverse effects on treatment and increase microorganisms' pathogenicity. It was observed in gentamicin as induction of biofilm formation through different mechanisms, particularly changes in the expression of specific proteins in E. faecalis.


Assuntos
Enterococcus faecalis , Infecções por Bactérias Gram-Positivas , Biofilmes , Gentamicinas/farmacologia , Humanos , Proteoma , Proteômica
9.
Chemistry ; 27(45): 11609-11617, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-33899273

RESUMO

A soluble, green-blue fluorescent, π-extended azatrioxa[8]circulene was synthesized by oxidative condensation of a 3,6-dihydroxycarbazole and 1,4-anthraquinone by using benzofuran scaffolding. This is the first circulene to incorporate anthracene within its carbon framework. Solvent-dependent fluorescence and bright green electroluminescence accompanied by excimer emission are the key optical properties of this material. The presence of sliding π-stacked columns in the single crystal of dianthracenylazatrioxa[8]circulene is found to cause a very high electron-hopping rate, thus making this material a promising n-type organic semiconductor with an electron mobility predicted to be around 2.26 cm2 V-1 s-1 . The best organic light-emitting diode (OLED) device based on the dianthracenylazatrioxa[8]circulene fluorescent emitter has a brightness of around 16 000 Cd m-2 and an external quantum efficiency of 3.3 %. Quantum dot-based OLEDs were fabricated by using dianthracenylazatrioxa[8]circulene as a host matrix material.

10.
J Org Chem ; 86(23): 16867-16881, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34723529

RESUMO

Transamidation reactions are often mediated by reactive substrates in the presence of overstoichiometric activating reagents and/or transition metal catalysts. Here we report the use of CO2 as a traceless catalyst: in the presence of catalytic amounts of CO2, transamidation reactions were accelerated with primary, secondary, and tertiary amide donors. Various amine nucleophiles including amino acid derivatives were tolerated, showcasing the utility of transamidation in peptide modification and polymer degradation (e.g., Nylon-6,6). In particular, N,O-dimethylhydroxyl amides (Weinreb amides) displayed a distinct reactivity in the CO2-catalyzed transamidation versus a N2 atmosphere. Comparative Hammett studies and kinetic analysis were conducted to elucidate the catalytic activation mechanism of molecular CO2, which was supported by DFT calculations. We attributed the positive effect of CO2 in the transamidation reaction to the stabilization of tetrahedral intermediates by covalent binding to the electrophilic CO2.


Assuntos
Dióxido de Carbono , Elementos de Transição , Amidas , Catálise , Cinética
11.
Magn Reson Chem ; 59(11): 1116-1125, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33860564

RESUMO

A series of five intramolecularly hydrogen-bonded arylhydrazone (aryl = phenol, p-nitrophenol, anisole, quinoline) derived molecular switches have been synthesized and characterized by NMR and HRMS techniques. It was found that the compounds exist as different isomers in solution. An investigation of both conformational and/or configurational changes of the azo-hydrazone compounds was carried out by 1D 1 H- and 13 C- spectra, 2D NOESY, COSY, HSQC, and HMBC techniques. It was found that these stimuli-responsive molecular switches exist mainly in the E form by intramolecularly hydrogen bonded between NH and the pyridine nitrogen at equilibrium. Deprotonation of the neutral E form yields the E' deprotonated isomer. Prediction of 13 C-NMR chemical shifts was achieved by DFT quantum mechanical calculations. Anions have traditionally been difficult to calculate correctly, so calculations of the anion using different functionals, basis sets, and solvent effects are also included. Deuterium isotope effects on the 13 C-NMR chemical shifts were employed in the assignments and furthermore utilized as indicators of intramolecular hydrogen bonding. Studies in various organic solvents including CDCl3 , CD3 CN, and DMSO-d6 were also performed aiming to monitor dynamic changes over several days. The effect of the hydrogen bonded solvents leads to Z forms.

12.
Molecules ; 26(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34946735

RESUMO

The vibrational NH stretching transitions in secondary amines with intramolecular NH···O hydrogen bonds were investigated by experimental and theoretical methods, considering a large number of compounds and covering a wide range of stretching wavenumbers. The assignment of the NH stretching transitions in the experimental IR spectra was, in several instances, supported by measurement of the corresponding ND wavenumbers and by correlation with the observed NH proton chemical shifts. The observed wavenumbers were correlated with theoretical wavenumbers predicted with B3LYP density functional theory, using the basis sets 6-311++G(d,p) and 6-31G(d) and considering the harmonic as well as the anharmonic VPT2 approximation. Excellent correlations were established between observed wavenumbers and calculated harmonic values. However, the correlations were non-linear, in contrast to the results of previous investigations of the corresponding OH···O systems. The anharmonic VPT2 wavenumbers were found to be linearly related to the corresponding harmonic values. The results provide correlation equations for the prediction of NH stretching bands on the basis of standard B3LYP/6-311++G(d,p) and B3LYP/6-31G(d) harmonic analyses, with standard deviations close to 38 cm-1. This is significant because the full anharmonic VPT2 analysis tends to be impractical for large molecules, requiring orders of magnitude more computing time than the harmonic analysis.

13.
Magn Reson Chem ; 58(2): 154-162, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31705583

RESUMO

A number of 5-acyl rhodanines and thiorhodanines with bulky acyl groups (pivaloyl and adamantoyl), not previously available, have been synthesized. The compounds are shown to exist in the enol form. Structures have been calculated using both the MP2 approach and the B3LYP-GD3BJ functional and the 6-311++G(d,p) basis set. Hydrogen bond energies are estimated by subtracting energies of a structure with the OH group turned 180° from those of the intramolecularly hydrogen-bonded one. Properties such as OH chemical shifts, two-bond isotope effects on 13 C chemical shifts, electron densities at the bond critical point from atoms in molecules analysis, and the hydrogen bond energies show that the sterically hindered compounds have stronger hydrogen bonds than methyl or isopropyl derivatives. The combination of oxygen and sulfur derivatives enables a detailed analysis of hydrogen bond energies.

14.
Chemphyschem ; 20(1): 78-91, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30452112

RESUMO

Prediction of chemical shifts in organic cations is known to be a challenge. In this article we meet this challenge for α-protonated alkylpyrroles, a class of compounds not yet studied in this context, and present a combined experimental and theoretical study of the 13 C and 1 H chemical shifts in three selected pyrroles. We have investigated the importance of the solvation model, basis set, and quantum chemical method with the goal of developing a simple computational protocol, which allows prediction of 13 C and 1 H chemical shifts with sufficient accuracy for identifying such compounds in mixtures. We find that density functional theory with the B3LYP functional is not sufficient for reproducing all 13 C chemical shifts, whereas already the simplest correlated wave function model, Møller-Plesset perturbation theory (MP2), leads to almost perfect agreement with the experimental data. Treatment of solvent effects generally improves the agreement with experiment to some extent and can in most cases be accomplished by a simple polarizable continuum model. The only exception is the NH proton, which requires inclusion of explicit solvent molecules in the calculation.

15.
Molecules ; 24(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835750

RESUMO

A number of o-hydroxy aromatic aldehydes have been synthesized to illustrate the effect of steric compression and O···O distances on the intramolecular hydrogen bond and the hydrogen bond energies. Hydrogen bond energies have been calculated using the 'hb and out' method using either the MP2 method or the B3LYP functional with the basis set 6-311++G(d,p). However, several compounds cannot be treated this way. Hydrogen bond energies are also determined using electron densities at bond critical points and these results are in good agreement with the results of the 'hb and out' model. Two-bond deuterium isotope effects on 13C chemical shifts are suggested as an experimental way to obtain information on hydrogen bond energies as they easily can be measured. Isotope effects on aldehyde proton chemical shifts have also been measured. The former show very good correlation with the hydrogen bond energies and the latter are related to short O···O distances. Short O···O distances can be obtained as the result of short C=C bond lengths, conjugative effects, and steric compression of the aldehyde group. Short O···O distances are in general related to high hydrogen bond energies in these intramolecularly hydrogen-bonded systems of resonance assisted hydrogen bond (RAHB) type.


Assuntos
Aldeídos/síntese química , Aldeídos/química , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Prótons , Teoria Quântica
16.
Magn Reson Chem ; 56(3): 172-182, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29117625

RESUMO

Five new thiophenoxyketinimines have been synthesized. 1 H and 13 C NMR spectra as well as deuterium isotope effects on 13 C chemical shifts are determined, and spectra are assigned. DFT and MP2 calculations of both structures, chemical shifts, and isotope effects on chemical shifts are done. The combined analysis reveals that the compounds are primarily on a zwitterionic form with an NH+ and a S- group and with a little of the neutral form mixed in. Very strong intramolecular hydrogen bonding is found and very high NH chemical shifts are observed. The theoretical calculations show that calculations at the MP2 level are best to obtain correct "C═S" chemical shifts.

17.
Magn Reson Chem ; 56(11): 1094-1100, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29920769

RESUMO

In a conventional Mannich reaction using piperidine, hydroxypiperidines, morpholine, and N-methylpiperazine with usnic acid, a deacetylation was observed resulting in a substitution at C-2, a loss of an acetyl group, and a Mannich base with a stabilized enol. The enol has a hydrogen bond to the nitrogen of the secondary amine. The structure was investigated by nuclear magnetic resonance and deuterium isotope effects on 13 C chemical shifts as well as with density functional theory calculations to study the changed hydrogen bond pattern. It was found that the hydrogen bond involving the OH-9 group in chloroform forms a strong hydrogen bond than in usnic acid itself and that this hydrogen bond becomes even stronger in the more polar solvent, dimethylsulfoxide. Tautomerism was observed in the Mannich base as demonstrated by deuterium isotope effects on chemical shifts. The position of the tautomeric equilibrium depends on the solvent, and the position of the equilibrium governs the strength of the OH-9…O═C hydrogen bond.

18.
Org Biomol Chem ; 13(21): 5937-43, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25925233

RESUMO

Insights to the subtle reactivity patterns of hydroxy-substituted carbazoles allows the precise synthesis of unsymmetrical azatrioxa[8]circulenes by the reaction of N-benzyl-2,7-di-tert-butyl-3,6-dihydroxycarbazole with two different 1,4-benzoquinones in the presence of an oxidant (chloranil) and a Lewis acid (BF3OEt2). The unique synthetic control obtained originates from the selectivity obtained upon reacting N-benzyl-2,7-di-tert-butyl-3,6-dihydroxycarbazole with an electron-rich benzoquinone to give first the C-C bond formation and then subsequently the dibenzofuran formation with high regioselectivity. Herein the first synthesis of unsymmetrical antiaromatic azatrioxa[8]circulenes and the full characterization using NMR spectroscopy, optical spectroscopy, electrochemistry, computational techniques and single crystal X-ray crystallography is reported. The controlled stepwise condensation of N-benzyl-2,7-di-tert-butyl-3,6-dihydroxycarbazole with two different 1,4-benzoquinones gives selectively the unsymmetrical azatrioxa[8]circulenes.

19.
J Glob Antimicrob Resist ; 36: 151-159, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154746

RESUMO

OBJECTIVES: Plasmid genes, termed mobile colistin resistance-1 (mcr-1) and mobile colistin resistance-2 (mcr-2), are associated with resistance to colistin in Escherichia coli (E. coli). These mcr genes result in a range of protein modifications contributing to colistin resistance. This study aims to discern the proteomic characteristics of E. coli-carrying mcr-1 and mcr-2 genes. Furthermore, it evaluates the expression levels of various proteins under different conditions (with and without colistin). METHODS: Plasmid extraction was performed using an alkaline lysis-based plasmid extraction kit, whereas polymerase chain reaction was used to detect the presence of mcr-1 and mcr-2 plasmids. The E. coli DH5α strain served as the competent cell for accepting and transforming mcr-1 and mcr-2 plasmids. We assessed proteomic alterations in the E. coli DH5α strain both with and without colistin in the growth medium. Proteomic data were analysed using mass spectrometry. RESULTS: The findings revealed significant protein changes in the E. coli DH5α strain following cloning of mcr-1 and mcr-2 plasmids. Of the 20 proteins in the DH5α strain, expression in 8 was suppressed following transformation. In the presence of colistin in the culture medium, 39 new proteins were expressed following transformation with mcr-1 and mcr-2 plasmids. The proteins with altered expression play various roles. CONCLUSION: The results of this study highlight numerous protein alterations in E. coli resulting from mcr-1 and mcr-2-mediated resistance to colistin. This understanding can shed light on the resistance mechanism. Additionally, the proteomic variations observed in the presence and absence of colistin might indicate potential adverse effects of indiscriminate antibiotic exposure on treatment efficacy and heightened pathogenicity of microorganisms.


Assuntos
Colistina , Proteínas de Escherichia coli , Colistina/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteoma , Proteômica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Clonagem Molecular
20.
Molecules ; 18(4): 4544-60, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23595091

RESUMO

Deuterium isotope effects on ¹³C-NMR chemical shifts are investigated in a series of 10-hydroxybenzo[h]quinolines (HBQ's) The OH proton is deuteriated. The isotope effects on ¹³C chemical shifts in these hydrogen bonded systems are rather unusual. The formal four-bond effects are found to be negative, indicating transmission via the hydrogen bond. In addition unusual long-range effects are seen. Structures, NMR chemical shifts and changes in nuclear shieldings upon deuteriation are calculated using DFT methods. Two-bond deuterium isotope effects on 13C chemical shifts are correlated with calculated OH stretching frequencies. Isotope effects on chemical shifts are calculated for systems with OH exchanged by OD. Hydrogen bond potentials are discussed. New and more soluble nitro derivatives are synthesized.


Assuntos
Deutério/química , Espectroscopia de Ressonância Magnética/métodos , Prótons , Quinolinas/análise , Quinolinas/química , Isótopos de Carbono/análise , Isótopos de Carbono/química , Deutério/análise , Ligação de Hidrogênio , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa