Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phytochem Anal ; 33(2): 303-319, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34585460

RESUMO

INTRODUCTION: Numerous efforts in natural product drug development are reported for the treatment of Coronavirus. Based on the literature, among these natural plants Artemisia annua L. shows some promise for the treatment of SARS-CoV-2. OBJECTIVE: The main objective of our study was to determine artemisinin content by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS), to investigate the in vitro biological activity of artemisinin from the A. annua plants grown in Turkey with various extracted methods, to elaborate in silico activity against SARS-CoV-2 using molecular modelling. METHODOLOGY: Twenty-one different extractions were applied. Direct and sequential extractions studies were compared with ultrasonic assisted maceration, Soxhlet, and ultra-rapid determined artemisinin active molecules by LC-ESI-MS/MS methods. The inhibition of spike protein and main protease (3CL) enzyme activity of SARS-CoV-2 virus was assessed by time resolved fluorescence energy transfer (TR-FRET) assay. RESULTS: Artemisinin content in the range 0.062-0.066%. Artemisinin showed significant inhibition of 3CL protease activity but not Spike/ACE-2 binding. The 50% effective concentration (EC50 ) of artemisinin against SARS-CoV-2 Spike pseudovirus was found greater than 50 µM (EC45 ) in HEK293T cell line whereas the cell viability was 94% of the control (P < 0.01). The immunosuppressive effects of artemisinin on TNF-α production on both pseudovirus and lipopolysaccharide (LPS)-induced THP-1 cells were found significant in a dose dependent manner. CONCLUSION: Further studies of these extracts for COVID-19 treatment will shed light to seek alternative treatment options. Moreover, these natural extracts can be used as an additional treatment option with medicines, as well as prophylactic use can be very beneficial for patients.


Assuntos
Artemisia annua , Artemisininas , Tratamento Farmacológico da COVID-19 , Antivirais/farmacologia , Artemisia annua/química , Artemisininas/farmacologia , Cromatografia Líquida , Células HEK293 , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , SARS-CoV-2 , Espectrometria de Massas em Tandem
2.
Medeni Med J ; 38(1): 88-94, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36974661

RESUMO

Cancer is a disease that results from the uncontrolled proliferation and growth of cells. Due to early detection methods, there is a decrease in death rates in many types of cancer. However, among the causes of death worldwide, cancer still ranks second after cardiovascular diseases. Therefore, cancer research has focused mainly on developing more effective treatments to reduce deaths from cancer. With a better understanding of the molecular mechanisms in cancer cells, advances in cancer treatment have evolved and changed. The main priority of research is to develop treatment modalities with the highest response rate and less side effects. In this context, immunotherapies have started a new era in cancer treatments. In this review, an overview of the future of next-generation treatment methods is presented by including the most preferred immunotherapy methods.

3.
Curr Med Chem ; 29(38): 5925-5948, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35761502

RESUMO

The COVID-19 outbreak caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to have high incidence and mortality rate globally. To meet the increasingly growing demand for new therapeutic drugs and vaccines, researchers are developing different diagnostic techniques focused on screening new drugs in clinical use, developing an antibody targeting a SARS-CoV-2 receptor, or interrupting infection/replication mechanisms of SARS-CoV-2. Although many prestigious research publications are addressing this subject, there is no open access platform where all experimental techniques for COVID-19 research can be seen as a whole. Many researchers have accelerated the development of in silico methods, high-throughput screening techniques, and in vitro assays. This development has played an important role in the emergence of improved, innovative strategies, including different antiviral drug development, new drug discovery protocols, combinations of approved drugs, and setting up new drug classes during the COVID-19 outbreak. Hence, the present review discusses the current literature on these modalities, including virtual in silico methods for instant ligand- and target-driven based techniques, nucleic acid amplification tests, and in vitro models based on sensitive cell cultures, tissue equivalents, organoids, and SARS-CoV-2 neutralization systems (lentiviral pseudotype, viral isolates, etc.). This pack of complementary tests informs researchers about the accurate, most relevant emerging techniques available and in vitro assays allow them to understand their strengths and limitations. This review could be a pioneer reference guide for the development of logical algorithmic approaches for new drugs and vaccine strategies against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Técnicas de Cultura de Células , Ensaios de Triagem em Larga Escala/métodos , Humanos , Ligantes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa