Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Ann Neurol ; 91(3): 317-328, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35064929

RESUMO

OBJECTIVE: This study aimed to elucidate the molecular features of inclusion body myositis (IBM). METHODS: We performed RNA sequencing analysis of muscle biopsy samples from 67 participants, consisting of 58 myositis patients with the pathological finding of CD8-positive T cells invading non-necrotic muscle fibers expressing major histocompatibility complex class I (43 IBM, 6 polymyositis, and 9 unclassifiable myositis), and 9 controls. RESULTS: Cluster analysis, principal component analysis, and pathway analysis showed that differentially expressed genes and pathways identified in IBM and polymyositis were mostly comparable. However, pathways related to cell adhesion molecules were upregulated in IBM as compared with polymyositis and controls (p < 0.01). Notably, CDH1, which encodes the epidermal cell junction protein cadherin 1, was overexpressed in the muscles of IBM, which was validated by another RNA sequencing dataset from previous publications. Western blotting confirmed the presence of mature cadherin 1 protein in the muscles of IBM. Immunohistochemical staining confirmed the positivity for anti-cadherin 1 antibody in the muscles of IBM, whereas there was no muscle fiber positive for anti-cadherin 1 antibody in immune-mediated necrotizing myopathy, antisynthetase syndrome, and controls. The fibers stained with anti-cadherin 1 antibody did not have rimmed vacuoles or abnormal protein accumulation. Experimental skeletal muscle regeneration and differentiation systems showed that CDH1 is expressed during skeletal muscle regeneration and differentiation. INTERPRETATION: CDH1 was detected as a differentially expressed gene, and immunohistochemistry showed that cadherin 1 exists in the muscles of IBM, whereas it was rarely seen in those of other idiopathic inflammatory myopathies. Cadherin 1 upregulation in muscle could provide a valuable clue to the pathological mechanisms of IBM. ANN NEUROL 2022;91:317-328.


Assuntos
Caderinas/metabolismo , Músculo Esquelético/metabolismo , Miosite de Corpos de Inclusão/metabolismo , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Caderinas/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miosite de Corpos de Inclusão/genética
2.
PLoS Genet ; 16(5): e1008826, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453729

RESUMO

Hearing loss (HL) is one of the most common sensory impairments and etiologically and genetically heterogeneous disorders in humans. Muscular dystrophies (MDs) are neuromuscular disorders characterized by progressive degeneration of skeletal muscle accompanied by non-muscular symptoms. Aberrant glycosylation of α-dystroglycan causes at least eighteen subtypes of MD, now categorized as MD-dystroglycanopathy (MD-DG), with a wide spectrum of non-muscular symptoms. Despite a growing number of MD-DG subtypes and increasing evidence regarding their molecular pathogeneses, no comprehensive study has investigated sensorineural HL (SNHL) in MD-DG. Here, we found that two mouse models of MD-DG, Largemyd/myd and POMGnT1-KO mice, exhibited congenital, non-progressive, and mild-to-moderate SNHL in auditory brainstem response (ABR) accompanied by extended latency of wave I. Profoundly abnormal myelination was found at the peripheral segment of the cochlear nerve, which is rich in the glycosylated α-dystroglycan-laminin complex and demarcated by "the glial dome." In addition, patients with Fukuyama congenital MD, a type of MD-DG, also had latent SNHL with extended latency of wave I in ABR. Collectively, these findings indicate that hearing impairment associated with impaired Schwann cell-mediated myelination at the peripheral segment of the cochlear nerve is a notable symptom of MD-DG.


Assuntos
Nervo Coclear/metabolismo , Distroglicanas/genética , Perda Auditiva Neurossensorial/metabolismo , Proteína Básica da Mielina/metabolismo , N-Acetilglucosaminiltransferases/genética , Síndrome de Walker-Warburg/fisiopatologia , Adolescente , Animais , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Glicosilação , Perda Auditiva Neurossensorial/etiologia , Perda Auditiva Neurossensorial/genética , Humanos , Lactente , Masculino , Camundongos , Síndrome de Walker-Warburg/complicações , Síndrome de Walker-Warburg/genética , Adulto Jovem
3.
J Biol Chem ; 295(11): 3678-3691, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31996371

RESUMO

Alzheimer's disease (AD) is the most common type of dementia, and its pathogenesis is associated with accumulation of ß-amyloid (Aß) peptides. Aß is produced from amyloid precursor protein (APP) that is sequentially cleaved by ß- and γ-secretases. Therefore, APP processing has been a target in therapeutic strategies for managing AD; however, no effective treatment of AD patients is currently available. Here, to identify endogenous factors that modulate Aß production, we performed a gene microarray-based transcriptome analysis of neuronal cells derived from human induced pluripotent stem cells, because Aß production in these cells changes during neuronal differentiation. We found that expression of the glycophosphatidylinositol-specific phospholipase D1 (GPLD1) gene is associated with these changes in Aß production. GPLD1 overexpression in HEK293 cells increased the secretion of galectin 3-binding protein (GAL3BP), which suppressed Aß production in an AD model, neuroglioma H4 cells. Mechanistically, GAL3BP suppressed Aß production by directly interacting with APP and thereby inhibiting APP processing by ß-secretase. Furthermore, we show that cells take up extracellularly added GAL3BP via endocytosis and that GAL3BP is localized in close proximity to APP in endosomes where amyloidogenic APP processing takes place. Taken together, our results indicate that GAL3BP may be a suitable target of AD-modifying drugs in future therapeutic strategies for managing AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Comunicação Autócrina , Diferenciação Celular , Linhagem Celular , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Comunicação Parácrina , Fosfolipase D/metabolismo , Ligação Proteica
4.
Int J Mol Sci ; 22(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34884967

RESUMO

Dystroglycanopathy is a collective term referring to muscular dystrophies with abnormal glycosylation of dystroglycan. At least 18 causative genes of dystroglycanopathy have been identified, and its clinical symptoms are diverse, ranging from severe congenital to adult-onset limb-girdle types. Moreover, some cases are associated with symptoms involving the central nervous system. In the 2010s, the structure of sugar chains involved in the onset of dystroglycanopathy and the functions of its causative gene products began to be identified as if they were filling the missing pieces of a jigsaw puzzle. In parallel with these discoveries, various dystroglycanopathy model mice had been created, which led to the elucidation of its pathological mechanisms. Then, treatment strategies based on the molecular basis of glycosylation began to be proposed after the latter half of the 2010s. This review briefly explains the sugar chain structure of dystroglycan and the functions of the causative gene products of dystroglycanopathy, followed by introducing the pathological mechanisms involved as revealed from analyses of dystroglycanopathy model mice. Finally, potential therapeutic approaches based on the pathological mechanisms involved are discussed.


Assuntos
Modelos Animais de Doenças , Distroglicanas/metabolismo , Terapia de Reposição de Enzimas/métodos , Terapia Genética/métodos , Terapia de Alvo Molecular/métodos , Distrofias Musculares/patologia , Distrofias Musculares/terapia , Animais , Distroglicanas/genética , Glicosilação , Humanos
5.
Hum Mol Genet ; 27(7): 1174-1185, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29360985

RESUMO

Congenital muscular dystrophies (CMDs) are characterized by progressive weakness and degeneration of skeletal muscle. In several forms of CMD, abnormal glycosylation of α-dystroglycan (α-DG) results in conditions collectively known as dystroglycanopathies, which are associated with central nervous system involvement. We recently demonstrated that fukutin, the gene responsible for Fukuyama congenital muscular dystrophy, encodes the ribitol-phosphate transferase essential for dystroglycan function. Brain pathology in patients with dystroglycanopathy typically includes cobblestone lissencephaly, mental retardation, and refractory epilepsy; however, some patients exhibit average intelligence, with few or almost no structural defects. Currently, there is no effective treatment for dystroglycanopathy, and the mechanisms underlying the generation of this broad clinical spectrum remain unknown. Here, we analysed four distinct mouse models of dystroglycanopathy: two brain-selective fukutin conditional knockout strains (neuronal stem cell-selective Nestin-fukutin-cKO and forebrain-selective Emx1-fukutin-cKO), a FukutinHp strain with the founder retrotransposal insertion in the fukutin gene, and a spontaneous Large-mutant Largemyd strain. These models exhibit variations in the severity of brain pathology, replicating the clinical heterogeneity of dystroglycanopathy. Immunofluorescence analysis of the developing cortex suggested that residual glycosylation of α-DG at embryonic day 13.5 (E13.5), when cortical dysplasia is not yet apparent, may contribute to subsequent phenotypic heterogeneity. Surprisingly, delivery of fukutin or Large into the brains of mice at E12.5 prevented severe brain malformation in Emx1-fukutin-cKO and Largemyd/myd mice, respectively. These findings indicate that spatiotemporal persistence of functionally glycosylated α-DG may be crucial for brain development and modulation of glycosylation during the fetal stage could be a potential therapeutic strategy for dystroglycanopathy.


Assuntos
Encéfalo/embriologia , Distroglicanas/metabolismo , Feto/embriologia , Técnicas de Transferência de Genes , Terapia Genética , Malformações do Desenvolvimento Cortical/terapia , Animais , Encéfalo/patologia , Distroglicanas/genética , Feminino , Feto/patologia , Glicosilação , Masculino , Malformações do Desenvolvimento Cortical/embriologia , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Camundongos , Camundongos Transgênicos
6.
Hum Mol Genet ; 27(22): 3974-3985, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30137437

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron loss. At present, there are no drugs that stop the progression of PD. As with other multifactorial genetic disorders, genome-wide association studies (GWASs) found multiple risk loci for PD, although their clinical significance remains uncertain. Here, we report the identification of candidate drugs for PD by a method using GWAS data and in silico databases. We identified 57 Food and Drug Administration-approved drug families as candidate neuroprotective drugs for PD. Among them, dabrafenib, which is known as a B-Raf kinase inhibitor and is approved for the treatment of malignant melanoma, showed remarkable cytoprotective effects in neurotoxin-treated SH-SY5Y cells and mice. Dabrafenib was found to inhibit apoptosis, and to enhance the phosphorylation of extracellular signal-regulated kinase (ERK), and inhibit the phosphorylation of c-Jun NH2-terminal kinase. Dabrafenib targets B-Raf, and we confirmed a protein-protein interaction between B-Raf and Rit2, which is coded by RIT2, a PD risk gene in Asians and Caucasians. In RIT2-knockout cells, the phosphorylation of ERK was reduced, and dabrafenib treatment improved the ERK phosphorylation. These data indicated that dabrafenib exerts protective effects against neurotoxicity associated with PD. By using animal model, we confirmed the effectiveness of this in silico screening method. Furthermore, our results suggest that this in silico drug screening system is useful in not only neurodegenerative diseases but also other common diseases such as diabetes mellitus and hypertension.


Assuntos
Imidazóis/administração & dosagem , Proteínas Monoméricas de Ligação ao GTP/genética , Fármacos Neuroprotetores/administração & dosagem , Oximas/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Simulação por Computador , Citoproteção/efeitos dos fármacos , Bases de Dados de Compostos Químicos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Estudo de Associação Genômica Ampla , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/tratamento farmacológico , Camundongos , Proteínas Monoméricas de Ligação ao GTP/antagonistas & inibidores , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fosforilação/efeitos dos fármacos , Mapas de Interação de Proteínas , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores
7.
Anal Chem ; 92(21): 14383-14392, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32881480

RESUMO

Sialic acid attached to nonreducing ends of glycan chains via different linkages is associated with specific interactions and physiological events. Linkage-specific derivatization of sialic acid is of great interest for distinguishing sialic acids by mass spectrometry, specifically for events governed by sialyl linkage types. In the present study, we demonstrate that α-2,3/8-sialyl linkage-specific amidation of esterified sialyloligosaccharides can be achieved via an intramolecular lactone. The method of lactone-driven ester-to-amide derivatization for sialic acid linkage-specific alkylamidation, termed LEAD-SALSA, employs in-solution ester-to-amide conversion to directly generate stable and sialyl linkage-specific glycan amides from their ester form by mixing with a preferred amine, resulting in the easy assignments of sialyl linkages by comparing the signals of esterified and amidated glycan. Using this approach, we demonstrate the accumulation of altered N-glycans in cardiac muscle tissue during mouse aging. Furthermore, we find that the stability of lactone is important for ester-to-amide conversion based on experiments and density functional theory calculations of reaction energies for lactone formation. By using energy differences of lactone formation, the LEAD-SALSA method can be used not only for the sialyl linkage-specific derivatization but also for distinguishing the branching structure of galactose linked to sialic acid. This simplified and direct sialylglycan discrimination will facilitate important studies on sialylated glycoconjugates.

8.
J Biol Chem ; 293(31): 12186-12198, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29884773

RESUMO

α-Dystroglycan (α-DG) is a highly glycosylated cell-surface laminin receptor. Defects in the O-mannosyl glycan of an α-DG with laminin-binding activity can cause α-dystroglycanopathy, a group of congenital muscular dystrophies. In the biosynthetic pathway of functional O-mannosyl glycan, fukutin (FKTN) and fukutin-related protein (FKRP), whose mutated genes underlie α-dystroglycanopathy, sequentially transfer ribitol phosphate (RboP) from CDP-Rbo to form a tandem RboP unit (RboP-RboP) required for the synthesis of the laminin-binding epitope on O-mannosyl glycan. Both RboP- and glycerol phosphate (GroP)-substituted glycoforms have recently been detected in recombinant α-DG. However, it is unclear how GroP is transferred to the O-mannosyl glycan or whether GroP substitution affects the synthesis of the O-mannosyl glycan. Here, we report that, in addition to having RboP transfer activity, FKTN and FKRP can transfer GroP to O-mannosyl glycans by using CDP-glycerol (CDP-Gro) as a donor substrate. Kinetic experiments indicated that CDP-Gro is a less efficient donor substrate for FKTN than is CDP-Rbo. We also show that the GroP-substituted glycoform synthesized by FKTN does not serve as an acceptor substrate for FKRP and that therefore further elongation of the outer glycan chain cannot occur with this glycoform. Finally, CDP-Gro inhibited the RboP transfer activities of both FKTN and FKRP. These results suggest that CDP-Gro inhibits the synthesis of the functional O-mannosyl glycan of α-DG by preventing further elongation of the glycan chain. This is the first report of GroP transferases in mammals.


Assuntos
Distroglicanas/metabolismo , Glicerol/metabolismo , Distrofias Musculares/metabolismo , Polissacarídeos/metabolismo , Glicerol/química , Glicosilação , Humanos , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Distrofias Musculares/genética , Pentosefosfatos/metabolismo , Pentosiltransferases , Proteínas/química , Proteínas/genética , Proteínas/metabolismo
9.
Acta Neuropathol ; 137(3): 455-466, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30721406

RESUMO

Multiple system atrophy (MSA) is a fatal adult-onset neurodegenerative disease that is characterized by varying degrees of cerebellar dysfunction and Parkinsonism. The neuropathological hallmark of MSA is alpha-synuclein (AS)-positive glial cytoplasmic inclusions (GCIs). Although severe neuronal loss (NL) is also observed in MSA, neuronal inclusions (NIs) are rare compared to GCIs, such that the pathological mechanism of NL in MSA is unclear. GCIs and NIs are late-stage pathology features relative to AS oligomers and may not represent early pathological changes in MSA. To reveal the early pathology of MSA, it is necessary to examine the early aggregation of AS, i.e., AS oligomers. Here, we adopted a proximity ligation assay (PLA) to examine the distribution of AS oligomers in brain tissue samples from patients with MSA and other diseases. Surprisingly, MSA brains showed a widespread distribution and abundant accumulation of oligomeric AS in neurons as well as oligodendrocytes of the neocortex. In several regions, oligomeric AS signal intensity was higher in cases with MSA than in cases with Parkinson's disease. In contrast to previous studies, AS-PLA revealed abundant AS oligomer accumulation in Purkinje cells in MSA brains, identifying oligomeric AS accumulation as a possible cause of Purkinje cell loss. This wide distribution of AS oligomers in MSA brain neurons has not been described previously and indicates a pathological mechanism of NL in MSA.


Assuntos
Imuno-Histoquímica/métodos , Atrofia de Múltiplos Sistemas/patologia , alfa-Sinucleína/análise , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Feminino , Humanos , Corpos de Inclusão/patologia , Masculino , Pessoa de Meia-Idade , Células de Purkinje/patologia , alfa-Sinucleína/metabolismo
10.
Proc Natl Acad Sci U S A ; 113(33): 9280-5, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27493216

RESUMO

The dystrophin glycoprotein complex, which connects the cell membrane to the basement membrane, is essential for a variety of biological events, including maintenance of muscle integrity. An O-mannose-type GalNAc-ß1,3-GlcNAc-ß1,4-(phosphate-6)-Man structure of α-dystroglycan (α-DG), a subunit of the complex that is anchored to the cell membrane, interacts directly with laminin in the basement membrane. Reduced glycosylation of α-DG is linked to some types of inherited muscular dystrophy; consistent with this relationship, many disease-related mutations have been detected in genes involved in O-mannosyl glycan synthesis. Defects in protein O-linked mannose ß1,2-N-acetylglucosaminyltransferase 1 (POMGnT1), a glycosyltransferase that participates in the formation of GlcNAc-ß1,2-Man glycan, are causally related to muscle-eye-brain disease (MEB), a congenital muscular dystrophy, although the role of POMGnT1 in postphosphoryl modification of GalNAc-ß1,3-GlcNAc-ß1,4-(phosphate-6)-Man glycan remains elusive. Our crystal structures of POMGnT1 agreed with our previous results showing that the catalytic domain recognizes substrate O-mannosylated proteins via hydrophobic interactions with little sequence specificity. Unexpectedly, we found that the stem domain recognizes the ß-linked GlcNAc of O-mannosyl glycan, an enzymatic product of POMGnT1. This interaction may recruit POMGnT1 to a specific site of α-DG to promote GlcNAc-ß1,2-Man clustering and also may recruit other enzymes that interact with POMGnT1, e.g., fukutin, which is required for further modification of the GalNAc-ß1,3-GlcNAc-ß1,4-(phosphate-6)-Man glycan. On the basis of our findings, we propose a mechanism for the deficiency in postphosphoryl modification of the glycan observed in POMGnT1-KO mice and MEB patients.


Assuntos
Distroglicanas/química , N-Acetilglucosaminiltransferases/química , Sítios de Ligação , Cristalização , Glicosilação , Humanos , Manose/química
11.
J Biol Chem ; 292(38): 15939-15951, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28790171

RESUMO

The Ror family receptor tyrosine kinases, Ror1 and Ror2, play important roles in regulating developmental morphogenesis and tissue- and organogenesis, but their roles in tissue regeneration in adult animals remain largely unknown. In this study, we examined the expression and function of Ror1 and Ror2 during skeletal muscle regeneration. Using an in vivo skeletal muscle injury model, we show that expression of Ror1 and Ror2 in skeletal muscles is induced transiently by the inflammatory cytokines, TNF-α and IL-1ß, after injury and that inhibition of TNF-α and IL-1ß by neutralizing antibodies suppresses expression of Ror1 and Ror2 in injured muscles. Importantly, expression of Ror1, but not Ror2, was induced primarily in Pax7-positive satellite cells (SCs) after muscle injury, and administration of neutralizing antibodies decreased the proportion of Pax7-positive proliferative SCs after muscle injury. We also found that stimulation of a mouse myogenic cell line, C2C12 cells, with TNF-α or IL-1ß induced expression of Ror1 via NF-κB activation and that suppressed expression of Ror1 inhibited their proliferative responses in SCs. Intriguingly, SC-specific depletion of Ror1 decreased the number of Pax7-positive SCs after muscle injury. Collectively, these findings indicate for the first time that Ror1 has a critical role in regulating SC proliferation during skeletal muscle regeneration. We conclude that Ror1 might be a suitable target in the development of diagnostic and therapeutic approaches to manage muscular disorders.


Assuntos
Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Regeneração , Células Satélites de Músculo Esquelético/citologia , Animais , Linhagem Celular , Proliferação de Células , Regulação Enzimológica da Expressão Gênica , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular , NF-kappa B/metabolismo , Fator de Transcrição PAX7/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
12.
Biochem Biophys Res Commun ; 497(4): 1025-1030, 2018 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-29477842

RESUMO

Dystroglycanopathies are a group of muscular dystrophies that are caused by abnormal glycosylation of dystroglycan; currently 18 causative genes are known. Functions of the dystroglycanopathy genes fukutin, fukutin-related protein (FKRP), and transmembrane protein 5 (TMEM5) were most recently identified; fukutin and FKRP are ribitol-phosphate transferases and TMEM5 is a ribitol xylosyltransferase. In this study, we show that fukutin, FKRP, and TMEM5 form a complex while maintaining each of their enzyme activities. Immunoprecipitation and immunofluorescence experiments demonstrated protein interactions between these 3 proteins. A protein complex consisting of endogenous fukutin and FKRP, and exogenously expressed TMEM5 exerts activities of each enzyme. Our data showed for the first time that endogenous fukutin and FKRP enzyme activities coexist with TMEM5 enzyme activity, and suggest the possibility that formation of this enzyme complex may contribute to specific and prompt biosynthesis of glycans that are required for dystroglycan function.


Assuntos
Proteínas de Membrana/metabolismo , Distrofias Musculares/metabolismo , Proteínas/metabolismo , Distroglicanas , Células HEK293 , Humanos , Complexos Multiproteicos , Pentosiltransferases , Polissacarídeos/biossíntese , Ribitol/metabolismo
13.
J Biol Chem ; 291(47): 24618-24627, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27733679

RESUMO

A defect in O-mannosyl glycan is the cause of α-dystroglycanopathy, a group of congenital muscular dystrophies caused by aberrant α-dystroglycan (α-DG) glycosylation. Recently, the entire structure of O-mannosyl glycan, [3GlcAß1-3Xylα1]n-3GlcAß1-4Xyl-Rbo5P-1Rbo5P-3GalNAcß1-3GlcNAcß1-4 (phospho-6)Manα1-, which is required for the binding of α-DG to extracellular matrix ligands, has been proposed. However, the linkage of the first Xyl residue to ribitol 5-phosphate (Rbo5P) is not clear. TMEM5 is a gene product responsible for α-dystroglycanopathy and was reported as a potential enzyme involved in this linkage formation, although the experimental evidence is still incomplete. Here, we report that TMEM5 is a xylosyltransferase that forms the Xylß1-4Rbo5P linkage on O-mannosyl glycan. The anomeric configuration and linkage position of the product (ß1,4 linkage) was determined by NMR analysis. The introduction of two missense mutations in TMEM5 found in α-dystroglycanopathy patients impaired xylosyltransferase activity. Furthermore, the disruption of the TMEM5 gene by CRISPR/Cas9 abrogated the elongation of the (-3GlcAß1-3Xylα1-) unit on O-mannosyl glycan. Based on these results, we concluded that TMEM5 acts as a UDP-d-xylose:ribitol-5-phosphate ß1,4-xylosyltransferase in the biosynthetic pathway of O-mannosyl glycan.


Assuntos
Distroglicanas/metabolismo , Proteínas de Membrana/metabolismo , Distrofias Musculares/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Linhagem Celular , Distroglicanas/química , Distroglicanas/genética , Glicosilação , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Distrofias Musculares/genética , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Pentosiltransferases , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética
14.
Nature ; 478(7367): 127-31, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21979053

RESUMO

Fukuyama muscular dystrophy (FCMD; MIM253800), one of the most common autosomal recessive disorders in Japan, was the first human disease found to result from ancestral insertion of a SINE-VNTR-Alu (SVA) retrotransposon into a causative gene. In FCMD, the SVA insertion occurs in the 3' untranslated region (UTR) of the fukutin gene. The pathogenic mechanism for FCMD is unknown, and no effective clinical treatments exist. Here we show that aberrant messenger RNA (mRNA) splicing, induced by SVA exon-trapping, underlies the molecular pathogenesis of FCMD. Quantitative mRNA analysis pinpointed a region that was missing from transcripts in patients with FCMD. This region spans part of the 3' end of the fukutin coding region, a proximal part of the 3' UTR and the SVA insertion. Correspondingly, fukutin mRNA transcripts in patients with FCMD and SVA knock-in model mice were shorter than the expected length. Sequence analysis revealed an abnormal splicing event, provoked by a strong acceptor site in SVA and a rare alternative donor site in fukutin exon 10. The resulting product truncates the fukutin carboxy (C) terminus and adds 129 amino acids encoded by the SVA. Introduction of antisense oligonucleotides (AONs) targeting the splice acceptor, the predicted exonic splicing enhancer and the intronic splicing enhancer prevented pathogenic exon-trapping by SVA in cells of patients with FCMD and model mice, rescuing normal fukutin mRNA expression and protein production. AON treatment also restored fukutin functions, including O-glycosylation of α-dystroglycan (α-DG) and laminin binding by α-DG. Moreover, we observe exon-trapping in other SVA insertions associated with disease (hypercholesterolemia, neutral lipid storage disease) and human-specific SVA insertion in a novel gene. Thus, although splicing into SVA is known, we have discovered in human disease a role for SVA-mediated exon-trapping and demonstrated the promise of splicing modulation therapy as the first radical clinical treatment for FCMD and other SVA-mediated diseases.


Assuntos
Processamento Alternativo/genética , Éxons/genética , Retroelementos/genética , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/patologia , Regiões 3' não Traduzidas/genética , Processamento Alternativo/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Distroglicanas/metabolismo , Técnicas de Introdução de Genes , Glicosilação , Humanos , Íntrons/genética , Japão , Laminina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Mutagênese Insercional/efeitos dos fármacos , Mutagênese Insercional/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Isoformas de RNA/genética , Sítios de Splice de RNA/genética , Síndrome de Walker-Warburg/terapia
15.
Hum Mol Genet ; 23(17): 4543-58, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24722207

RESUMO

Several types of muscular dystrophy are caused by defective linkage between α-dystroglycan (α-DG) and laminin. Among these, dystroglycanopathy, including Fukuyama-type congenital muscular dystrophy (FCMD), results from abnormal glycosylation of α-DG. Recent studies have shown that like-acetylglucosaminyltransferase (LARGE) strongly enhances the laminin-binding activity of α-DG. Therefore, restoration of the α-DG-laminin linkage by LARGE is considered one of the most promising possible therapies for muscular dystrophy. In this study, we generated transgenic mice that overexpress LARGE (LARGE Tg) and crossed them with dy(2J) mice and fukutin conditional knockout mice, a model for laminin α2-deficient congenital muscular dystrophy (MDC1A) and FCMD, respectively. Remarkably, in both the strains, the transgenic overexpression of LARGE resulted in an aggravation of muscular dystrophy. Using morphometric analyses, we found that the deterioration of muscle pathology was caused by suppression of muscle regeneration. Overexpression of LARGE in C2C12 cells further demonstrated defects in myotube formation. Interestingly, a decreased expression of insulin-like growth factor 1 (IGF-1) was identified in both LARGE Tg mice and LARGE-overexpressing C2C12 myotubes. Supplementing the C2C12 cells with IGF-1 restored the defective myotube formation. Taken together, our findings indicate that the overexpression of LARGE aggravates muscular dystrophy by suppressing the muscle regeneration and this adverse effect is mediated via reduced expression of IGF-1.


Assuntos
Regulação para Baixo , Fator de Crescimento Insulin-Like I/metabolismo , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/fisiopatologia , N-Acetilglucosaminiltransferases/metabolismo , Regeneração , Animais , Fusão Celular , Linhagem Celular , Distroglicanas/metabolismo , Glicosilação , Humanos , Camundongos , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Mioblastos/metabolismo , Mioblastos/patologia , Fenótipo , Proteínas/metabolismo , Transfecção , Transferases
16.
Hum Mol Genet ; 22(15): 3003-15, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23562821

RESUMO

A group of muscular dystrophies, dystroglycanopathy is caused by abnormalities in post-translational modifications of dystroglycan (DG). To understand better the pathophysiological roles of DG modification and to establish effective clinical treatment for dystroglycanopathy, we here generated two distinct conditional knock-out (cKO) mice for fukutin, the first dystroglycanopathy gene identified for Fukuyama congenital muscular dystrophy. The first dystroglycanopathy model-myofiber-selective fukutin-cKO [muscle creatine kinase (MCK)-fukutin-cKO] mice-showed mild muscular dystrophy. Forced exercise experiments in presymptomatic MCK-fukutin-cKO mice revealed that myofiber membrane fragility triggered disease manifestation. The second dystroglycanopathy model-muscle precursor cell (MPC)-selective cKO (Myf5-fukutin-cKO) mice-exhibited more severe phenotypes of muscular dystrophy. Using an isolated MPC culture system, we demonstrated, for the first time, that defects in the fukutin-dependent modification of DG lead to impairment of MPC proliferation, differentiation and muscle regeneration. These results suggest that impaired MPC viability contributes to the pathology of dystroglycanopathy. Since our data suggested that frequent cycles of myofiber degeneration/regeneration accelerate substantial and/or functional loss of MPC, we expected that protection from disease-triggering myofiber degeneration provides therapeutic effects even in mouse models with MPC defects; therefore, we restored fukutin expression in myofibers. Adeno-associated virus (AAV)-mediated rescue of fukutin expression that was limited in myofibers successfully ameliorated the severe pathology even after disease progression. In addition, compared with other gene therapy studies, considerably low AAV titers were associated with therapeutic effects. Together, our findings indicated that fukutin-deficient dystroglycanopathy is a regeneration-defective disorder, and gene therapy is a feasible treatment for the wide range of dystroglycanopathy even after disease progression.


Assuntos
Distroglicanas/metabolismo , Expressão Gênica , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Mioblastos/metabolismo , Fenótipo , Animais , Sobrevivência Celular/genética , Modelos Animais de Doenças , Glicosilação , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fator Regulador Miogênico 5/genética , Proteínas/genética , Proteínas/metabolismo , Transferases
17.
N Engl J Med ; 364(10): 939-46, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21388311

RESUMO

Dystroglycan, which serves as a major extracellular matrix receptor in muscle and the central nervous system, requires extensive O-glycosylation to function. We identified a dystroglycan missense mutation (Thr192→Met) in a woman with limb-girdle muscular dystrophy and cognitive impairment. A mouse model harboring this mutation recapitulates the immunohistochemical and neuromuscular abnormalities observed in the patient. In vitro and in vivo studies showed that the mutation impairs the receptor function of dystroglycan in skeletal muscle and brain by inhibiting the post-translational modification, mediated by the glycosyltransferase LARGE, of the phosphorylated O-mannosyl glycans on α-dystroglycan that is required for high-affinity binding to laminin.


Assuntos
Distroglicanas/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação de Sentido Incorreto , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Linhagem , Fenótipo , Análise de Sequência de DNA
18.
Proc Natl Acad Sci U S A ; 108(42): 17426-31, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21987822

RESUMO

α-dystroglycan is a highly O-glycosylated extracellular matrix receptor that is required for anchoring of the basement membrane to the cell surface and for the entry of Old World arenaviruses into cells. Like-acetylglucosaminyltransferase (LARGE) is a key molecule that binds to the N-terminal domain of α-dystroglycan and attaches ligand-binding moieties to phosphorylated O-mannose on α-dystroglycan. Here we show that the LARGE modification required for laminin- and virus-binding occurs on specific Thr residues located at the extreme N terminus of the mucin-like domain of α-dystroglycan. Deletion and mutation analyses demonstrate that the ligand-binding activity of α-dystroglycan is conferred primarily by LARGE modification at Thr-317 and -319, within the highly conserved first 18 amino acids of the mucin-like domain. The importance of these paired residues in laminin-binding and clustering activity on myoblasts and in arenavirus cell entry is confirmed by mutational analysis with full-length dystroglycan. We further demonstrate that a sequence of five amino acids, Thr(317)ProThr(319)ProVal, contains phosphorylated O-glycosylation and, when modified by LARGE is sufficient for laminin-binding. Because the N-terminal region adjacent to the paired Thr residues is removed during posttranslational maturation of dystroglycan, our results demonstrate that the ligand-binding activity resides at the extreme N terminus of mature α-dystroglycan and is crucial for α-dystroglycan to coordinate the assembly of extracellular matrix proteins and to bind arenaviruses on the cell surface.


Assuntos
Infecções por Arenaviridae/etiologia , Infecções por Arenaviridae/metabolismo , Distroglicanas/metabolismo , Laminina/metabolismo , Vírus da Coriomeningite Linfocítica , N-Acetilglucosaminiltransferases/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Distroglicanas/química , Distroglicanas/genética , Glicosilação , Células HEK293 , Humanos , Vírus da Coriomeningite Linfocítica/patogenicidade , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese , Mioblastos/metabolismo , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Treonina/química , Internalização do Vírus
19.
J Biochem ; 175(4): 418-425, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38140954

RESUMO

The core M3 O-mannosyl glycan on α-dystroglycan serves as the binding epitope for extracellular matrix molecules. Defects in core M3 glycans cause congenital muscular dystrophies that are collectively known as dystroglycanopathies. The core M3 glycan contains a tandem D-ribitol-5-phosphate (Rbo5P) structure, which is synthesized by the Rbo5P-transferases fukutin and fukutin-related protein using CDP-ribitol (CDP-Rbo) as a donor substrate. CDP-Rbo is synthesized from CTP and Rbo5P by CDP-Rbo pyrophosphorylase A. However, the Rbo5P biosynthesis pathway has yet to be elucidated in mammals. Here, we investigated the reductase activities toward four substrates, including ribose, ribulose, ribose-phosphate and ribulose-phosphate, to identify the intracellular Rbo5P production pathway and elucidated the role of the aldo-keto reductases AKR1A1, AKR1B1 and AKR1C1 in those pathways. It was shown that the ribose reduction pathway is the endogenous pathway that contributes most to Rbo5P production in HEK293T cells and that AKR1B1 is the major reductase in this pathway.


Assuntos
Ribitol , Ribose , Humanos , Animais , Ribitol/metabolismo , Fosfatos , Células HEK293 , Distroglicanas/metabolismo , Oxirredutases , Mamíferos , Polissacarídeos/metabolismo , Aldeído Redutase
20.
J Biol Chem ; 287(11): 8398-406, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22275357

RESUMO

Fukuyama-type congenital muscular dystrophy (FCMD), the second most common childhood muscular dystrophy in Japan, is caused by alterations in the fukutin gene. Mutations in fukutin cause abnormal glycosylation of α-dystroglycan, a cell surface laminin receptor; however, the exact function and pathophysiological role of fukutin are unclear. Although the most prevalent mutation in Japan is a founder retrotransposal insertion, point mutations leading to abnormal glycosylation of α-dystroglycan have been reported, both in Japan and elsewhere. To understand better the molecular pathogenesis of fukutin-deficient muscular dystrophies, we constructed 13 disease-causing missense fukutin mutations and examined their pathological impact on cellular localization and α-dystroglycan glycosylation. When expressed in C2C12 myoblast cells, wild-type fukutin localizes to the Golgi apparatus, whereas the missense mutants A170E, H172R, H186R, and Y371C instead accumulated in the endoplasmic reticulum. Protein O-mannose ß1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) also mislocalizes when co-expressed with these missense mutants. The results of nocodazole and brefeldin A experiments suggested that these mutant proteins were not transported to the Golgi via the anterograde pathway. Furthermore, we found that low temperature culture or curcumin treatment corrected the subcellular location of these missense mutants. Expression studies using fukutin-null mouse embryonic stem cells showed that the activity responsible for generating the laminin-binding glycan of α-dystroglycan was retained in these mutants. Together, our results suggest that some disease-causing missense mutations cause abnormal folding and localization of fukutin protein, and therefore we propose that folding amelioration directed at correcting the cellular localization may provide a therapeutic benefit to glycosylation-deficient muscular dystrophies.


Assuntos
Mutação de Sentido Incorreto , Dobramento de Proteína , Proteínas/metabolismo , Síndrome de Walker-Warburg/metabolismo , Substituição de Aminoácidos , Animais , Antineoplásicos/farmacologia , Brefeldina A , Linhagem Celular , Distroglicanas/genética , Distroglicanas/metabolismo , Glicosilação/efeitos dos fármacos , Humanos , Camundongos , Camundongos Mutantes , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Nocodazol/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Proteínas/genética , Transferases , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/terapia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa