Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Xenobiotica ; 53(12): 621-633, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38111268

RESUMO

The pharmacokinetic (PK) and toxicokinetic profile of a drug from its preclinical evaluation helps the researcher determine whether the drug should be tested in humans based on its safety and toxicity.Preclinical studies require time and resources and are prone to error. Moreover, according to the United States Food and Drug Administration Modernisation Act 2, animal testing is no longer mandatory for new drug development, and an animal-free alternative, such as cell-based assay and computer models, can be used.Different physiologically based PK models were developed for an anaplastic lymphoma kinase inhibitor in rats and monkeys after intravenous and oral administration using its physicochemical properties and in vitro characterisation data.The developed model was validated against the in vivo data available in the literature, and the validation results were found within the acceptable limit. A parameter sensitivity analysis was performed to identify the properties of the compound influencing the PK profile.This work demonstrates the application of the physiologically based PK model to predict the PKs of a drug, which will eventually assist in reducing the number of animal studies and save time and cost of drug discovery and development.


Assuntos
Quinase do Linfoma Anaplásico , Alternativas aos Testes com Animais , Modelos Biológicos , Inibidores de Proteínas Quinases , Animais , Humanos , Ratos , Administração Oral , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Simulação por Computador , Haplorrinos , Inibidores de Proteínas Quinases/farmacocinética
2.
AAPS PharmSciTech ; 24(1): 34, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627410

RESUMO

An increasingly large dataset of pharmaceutics disciplines is frequently challenging to comprehend. Since machine learning needs high-quality data sets, the open-source dataset can be a place to start. This work presents a systematic method to choose representative subsamples from the existing research, along with an extensive set of quality measures and a visualization strategy. The preceding article (Muthudoss et al.. in AAPS PharmSciTech 23, 2022) describes a workflow for leveraging near infrared (NIR) spectroscopy to obtain reliable and robust data on pharmaceutical samples. This study describes the systematic and structured procedure for selecting subsamples from the historical data. We offer a wide range of in-depth quality measures, diagnostic tools, and visualization techniques. A real-world, well-researched NIR dataset was employed to demonstrate this approach. This open-source tablet dataset ( http://www.models.life.ku.dk/Tablets ) consists of different doses in milligrams, different shapes, and sizes of dosage forms, slots in tablets, three different manufacturing scales (lab, pilot, production), coating differences (coated vs uncoated), etc. This sample is appropriate; that is, the model was developed on one scale (in this research, the lab scale), and it can be great to investigate how well the top models are transferable when tested on new data like pilot-scale or production (full) scale. A literature review indicated that the PLS regression models outperform artificial neural network-multilayer perceptron (ANN-MLP). This work demonstrates the selection of appropriate hyperparameters and their impact on ANN-MLP model performance. The hyperparameter tuning approaches and performance with available references are discussed for the data under investigation. Model extension from lab-scale to pilot-scale/production scale is demonstrated. HIGHLIGHTS: • We present a comprehensive quality metrics and visualization strategy in selecting subsamples from the existing studies • A comprehensive assessment and workflow are demonstrated using historical real-world near-infrared (NIR) data sets • Selection of appropriate hyperparameters and their impact on artificial neural network-multilayer perceptron (ANN-MLP) model performance • The choice of hyperparameter tuning approaches and performance with available references are discussed for the data under investigation • Model extension from lab-scale to pilot-scale successfully demonstrated.


Assuntos
Redes Neurais de Computação , Espectroscopia de Luz Próxima ao Infravermelho , Fluxo de Trabalho , Aprendizado de Máquina , Modelos Teóricos
3.
Int J Biol Macromol ; : 134814, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39168227

RESUMO

Amyloids, with their ß-sheet-rich structure, contribute to diabetes, neurodegenerative diseases, and amyloidosis by aggregating within diverse anatomical compartments. Insulin amyloid (IA), sharing structural resemblances with amyloids linked to neurological disorders, acts as a prototype, while compounds capable of degrading these fibrils hold promise as therapeutic agents for amyloidosis intervention. In this research, liposomal nanoformulated iota carrageenan (nCG) was formulated to disrupt insulin amyloids, demonstrating about a 17-20 % higher degradation efficacy compared to conventional carrageenan through thioflavin T fluorescence, dynamic light scattering analysis, and turbidity quantification. The biocompatibility of the nCG and nCG-treated insulin amyloids was evaluated through MTT assay, live-dead cell assay on V79 cells, and hemolysis testing on human blood samples to establish their safety for use in vivo. Zebrafish embryos were utilized to assess in vivo biocompatibility, while adult zebrafish were employed to monitor the degradation capacity of IA post subcutaneous injection, with fluorescence emitted by the fish captured via IVIS. This demonstrated that the formulated nCG exhibited superior anti-amyloid efficacy compared to carrageenan alone, while both materials demonstrated biocompatibility. Furthermore, through docking simulations, an exploration was conducted into the molecular mechanisms governing the inhibition of the target protein pancreatic insulin by carrageenan.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa