Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445876

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), of which there are several variants. The three major variants (Alpha, Delta, and Omicron) carry the N501Y, L452R, and Q493R/Q498R mutations, respectively, in the S gene. Control of COVID-19 requires rapid and reliable detection of not only SARS-CoV-2 but also its variants. We previously developed a reverse transcription loop-mediated isothermal amplification assay combined with a bioluminescent assay in real time (RT-LAMP-BART) to detect the L452R mutation in the SARS-CoV-2 spike protein. In this study, we established LAMP primers and peptide nucleic acid probes to detect N501Y and Q493R/Q498R. The LAMP primer sets and PNA probes were designed for the N501Y and Q493R/Q498R mutations on the S gene of SARS-CoV-2. The specificities of RT-LAMP-BART assays were evaluated using five viral and four bacterial reference strains. The sensitivities of RT-LAMP-BART assays were evaluated using synthetic RNAs that included the target sequences, together with RNA-spiked clinical nasopharyngeal and salivary specimens. The results were compared with those of conventional real-time reverse transcription-polymerase chain reaction (RT-PCR) methods. The method correctly identified N501Y and Q493R/Q498R. Within 30 min, the RT-LAMP-BART assays detected up to 100-200 copies of the target genes; conventional real-time RT-PCR required 130 min and detected up to 500-3000 copies. Surprisingly, the real-time RT-PCR for N501Y did not detect the BA.1 and BA.2 variants (Omicron) that exhibited the N501Y mutation. The novel RT-LAMP-BART assay is highly specific and more sensitive than conventional real-time RT-PCR. The new assay is simple, inexpensive, and rapid; thus, it can be useful in efforts to identify SARS-CoV-2 variants of concern.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/genética , Transcrição Reversa/genética , Sensibilidade e Especificidade , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA , Medições Luminescentes , RNA Viral/genética
2.
Sci Rep ; 14(1): 12187, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806581

RESUMO

This was the first longitudinal study to analyze dental clinic wastewater to estimate asymptomatic SARS-CoV-2 infection trends in children. We monitored wastewater over a 14-month period, spanning three major COVID-19 waves driven by the Alpha, Delta, and Omicron variants. Each Saturday, wastewater was sampled at the Pediatric Dental Clinic of the only dental hospital in Japan's Saitama Prefecture. The relationship between the weekly number of cases in Saitama Prefecture among residents aged < 10 years (exposure) and wastewater SARS-CoV-2 RNA detection (outcome) was examined. The number of cases was significantly associated with wastewater SARS-CoV-2 RNA positivity (risk ratio, 5.36; 95% confidence interval, 1.72-16.67; Fisher's exact test, p = 0.0005). A sample from Week 8 of 2022 harbored the Omicron variant. Compared to sporadic individual testing, this approach allows continuous population-level surveillance, which is less affected by healthcare seeking and test availability. Since wastewater from pediatric dental clinics originates from the oral cavities of asymptomatic children, such testing can provide important information regarding asymptomatic COVID-19 in children, complementing clinical pediatric data.


Assuntos
COVID-19 , Clínicas Odontológicas , SARS-CoV-2 , Águas Residuárias , Humanos , COVID-19/epidemiologia , COVID-19/diagnóstico , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , Águas Residuárias/virologia , Criança , Pré-Escolar , Japão/epidemiologia , Feminino , Masculino , Estudos Longitudinais , RNA Viral/genética , RNA Viral/análise , Lactente
3.
PLoS One ; 17(3): e0265748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35312732

RESUMO

The new coronavirus infection (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be fatal, and several variants of SARS-CoV-2 with mutations of the receptor-binding domain (RBD) have increased avidity for human cell receptors. A single missense mutation of U to G at nucleotide position 1355 (U1355G) in the spike (S) gene changes leucine to arginine (L452R) in the spike protein. This mutation has been observed in the India and California strains (B.1.617 and B.1.427/B.1.429, respectively). Control of COVID-19 requires rapid and reliable detection of SARS-CoV-2. Therefore, we established a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay plus a bioluminescent assay in real-time (BART) to detect SARS-CoV-2 and the L452R spike mutation. The specificity and sensitivity of the RT-LAMP-BART assay was evaluated using synthetic RNAs including target sequences and RNA-spiked clinical nasopharyngeal and saliva specimens as well as reference strains representing five viral and four bacterial pathogens. The novel RT-LAMP-BART assay to detect SARS-CoV-2 was highly specific compared to the conventional real-time RT-PCR. Within 25 min, the RT-LAMP-BART assay detected 80 copies of the target gene in a sample, whereas the conventional real-time RT-PCR method detected 5 copies per reaction within 130 min. Using RNA-spiked specimens, the sensitivity of the RT-LAMP-BART assay was slightly attenuated compared to purified RNA as a template. The results were identical to those of the conventional real-time RT-PCR method. Furthermore, using a peptide nucleic acid (PNA) probe, the RT-LAMP-BART method correctly identified the L452R spike mutation. This is the first report describes RT-LAMP-BART as a simple, inexpensive, rapid, and useful assay for detection of SARS-CoV-2, its variants of concern, and for screening of COVID-19.


Assuntos
Substituição de Aminoácidos , COVID-19/diagnóstico , Ácidos Nucleicos Peptídicos/genética , SARS-CoV-2/classificação , Glicoproteína da Espícula de Coronavírus/genética , Sítios de Ligação , California , Diagnóstico Precoce , Humanos , Índia , Limite de Detecção , Medições Luminescentes , Técnicas de Diagnóstico Molecular , Mutação de Sentido Incorreto , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Reversa , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/química
4.
Front Cell Infect Microbiol ; 12: 1000445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36710975

RESUMO

Rapid evaluation of antimicrobial susceptibility is important in the treatment of nosocomial infections by Gram-negative bacteria, which increasingly carry carbapenemases and metallo-ß-lactamases. We developed loop-mediated isothermal amplification (LAMP)-based assays for four ß-lactamase genes (bla KPC, bla NDM-1, bla IMP-1 group, and bla VIM). The assays were evaluated using eight reference bacterial strains (Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter bereziniae) harboring six ß-lactamase genes. A total of 55 Gram-negative bacterial strains, including 47 clinical P. aeruginosa isolates, fully characterized by next-generation sequencing (NGS), were used to evaluate the LAMP assays. The results were compared to those of conventional PCR. The LAMP assays were able to detect as few as 10 to 100 copies of a gene, compared to 10 to 104 copies for conventional PCR. The LAMP assay detected four ß-lactamase genes with a sensitivity similar to that using purified DNA as the template in DNA-spiked urine, sputum, and blood specimens. By contrast, the sensitivity of PCR was 1- to 100-fold lower with DNA-spiked clinical specimens. Therefore, the LAMP assays were proved to be an appropriate tool for the detection of four ß-lactamases.


Assuntos
Proteínas de Bactérias , beta-Lactamases , beta-Lactamases/genética , Proteínas de Bactérias/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular , Bactérias Gram-Negativas/genética , Escherichia coli/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa