Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Bioorg Med Chem Lett ; 103: 129691, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452827

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that results from destruction of the myelin sheath. Due to heterogeneity of the symptoms and course of MS, periodic monitoring of disease activity is important for diagnosis and treatment. In the present study, we synthesized four radioiodinated benzoxazole (BO) and benzothiazole (BT) derivatives, and evaluated their utility as novel myelin imaging probes for single photon emission computed tomography (SPECT). In a biodistribution study using normal mice, three compounds ([125I]BO-1, [125I]BO-2, and [125I]BT-2) displayed moderate brain uptake (2.7, 2.9, and 2.8% ID/g, respectively) at 2 min postinjection. On ex vivo autoradiography using normal mice, [125I]BO-2 showed the most preferable ratio of radioactivity accumulation in white matter (myelin-rich region) versus gray matter (myelin-deficient region). In addition, the radioactivity of [125I]BO-2 was reduced in the lysophosphatidylcholine-induced demyelination region. In conclusion, [123I]BO-2 demonstrated the fundamental characteristics of a myelin imaging probe for SPECT.


Assuntos
Esclerose Múltipla , Bainha de Mielina , Camundongos , Animais , Bainha de Mielina/metabolismo , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/metabolismo , Distribuição Tecidual , Encéfalo/diagnóstico por imagem , Benzotiazóis/metabolismo
2.
Biol Pharm Bull ; 47(2): 345-349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296548

RESUMO

The mechanisms of several drugs remain unclear, limiting our understanding of how they exert their effects. Receptor affinities have not been comprehensively measured during drug development, and the safety investigations in humans are limited. Therefore, numerous unknown adverse and beneficial effects of drugs in humans persist. In this review, I highlight our achievements in identifying the unexpected beneficial effects of drugs through the analysis of real-world clinical data, which can contribute to drug repositioning and target finding. (1) Through the analysis of real-world data, we found that the anti-arrhythmic amiodarone induced interstitial lung disease, leading to fibrosis. Surprisingly, concurrent use of an anti-thrombin drug, dabigatran mitigated these adverse events. Pharmacological studies using animal models have mimicked this phenomenon and revealed the molecular mechanisms associated with the platelet-derived growth factor-alpha receptors. (2) The antidiabetic dipeptidyl-peptidase 4 inhibitors increased the risk of an autoimmune disease, bullous pemphigoid, which was reduced by the concomitant use of lisinopril. Pharmacological studies using human peripheral blood mononuclear cells have revealed that lisinopril suppressed the skin disorders by inhibiting the expression of cutaneous matrix metalloproteinase 9 in macrophages. (3) The antimicrobial fluoroquinolones increased the risk of tendinopathy, which was reduced by the concomitant use of dexamethasone. However, clinical guidelines have suggested that corticosteroid increases the risk of tendinopathy. Our investigation demonstrated that fluoroquinolones impaired tendon cells through DNA damage by generating reactive oxygen species. In contrast, dexamethasone exhibited an acute beneficial effect on tendon tissue by upregulating the expression of a radical scavenger, glutathione peroxidase 3.


Assuntos
Leucócitos Mononucleares , Tendinopatia , Animais , Humanos , Dexametasona/uso terapêutico , Fluoroquinolonas , Lisinopril/uso terapêutico , Tendinopatia/induzido quimicamente , Tendinopatia/prevenção & controle
3.
Biol Pharm Bull ; 47(1): 253-258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38267040

RESUMO

Perry disease, a rare autosomal dominant neurodegenerative disorder, is characterized by parkinsonism, depression or apathy, unexpected weight loss, and central hypoventilation. Genetic analyses have revealed a strong association between point mutations in the dynactin I gene (DCTN1) coding p150glued and Perry disease. Although previous reports have suggested a critical role of p150glued aggregation in Perry disease pathology, whether and how p150glued mutations affect protein aggregation is not fully understood. In this study, we comprehensively investigated the intracellular distribution of the p150glued mutants in HEK293T cells. We further assessed the effect of co-overexpression of the wild-type p150glued protein with mutants on the formation of mutant aggregates. Notably, overexpression of p150glued mutants identified in healthy controls, which is also associated with amyotrophic lateral sclerosis, showed a thread-like cytoplasmic distribution, similar to the wild-type p150glued. In contrast, p150glued mutants in Perry disease and motor neuron disease caused aggregation. In addition, the co-overexpression of the wild-type protein with p150glued mutants in Perry disease suppressed aggregate formation. In contrast, the p150glued aggregation of motor neuron disease mutants was less affected by the wild-type p150glued. Further investigation of the mechanism of aggregate formation, contents of the aggregates, and biological mechanisms of Perry disease could help develop novel therapeutics.


Assuntos
Doença dos Neurônios Motores , Humanos , Complexo Dinactina/genética , Células HEK293 , Citosol , Mutação
4.
J Pharmacol Sci ; 151(1): 9-16, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36522124

RESUMO

Tardive akathisia is a movement disorder characterized by internal restlessness with an uncontrollable urge to move, leading to repetitive movements. It is a common side effect of long-term treatment with dopamine D2 receptor antagonists. In the present study, we analyzed the FDA Adverse Event Reporting System and IBM MarketScan Research Database to find a drug that can be used concomitantly with dopamine D2 receptor antagonists and still reduce the risk of akathisia. Acetaminophen was determined to be the most effective akathisia-suppressing drug. In an experimental validation of the hypothesis, chronic treatment of rats with haloperidol caused akathisia symptoms, including increased stereotyped behavior and locomotor activity, and decreased immobility time. Acute treatment with acetaminophen significantly attenuated haloperidol-induced akathisia. In the ventral striata of these rats, acetaminophen prevented haloperidol-induced decrease in the number of c-Fos+ preproenkephalin+ neurons. These results suggest that acetaminophen is effective in suppressing tardive akathisia by activating indirect-pathway medium spiny neurons.


Assuntos
Acatisia Induzida por Medicamentos , Antipsicóticos , Animais , Ratos , Acatisia Induzida por Medicamentos/tratamento farmacológico , Acatisia Induzida por Medicamentos/etiologia , Acatisia Induzida por Medicamentos/prevenção & controle , Haloperidol/efeitos adversos , Dopamina , Acetaminofen/efeitos adversos , Agitação Psicomotora/etiologia , Agitação Psicomotora/complicações , Antagonistas dos Receptores de Dopamina D2 , Antipsicóticos/efeitos adversos
5.
Biol Pharm Bull ; 46(1): 102-110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36596518

RESUMO

Peripheral neuropathy is one of the major adverse effects that limit the clinical application of bortezomib (BTZ). However, the underlying mechanisms of BTZ-induced peripheral neuropathy (BIPN) remain elusive. To examine cell types potentially involved in the development of BIPN, we used four purified cultures of cells of the peripheral nervous system: Schwann cells (SCs), satellite glial cells (SGCs), macrophages, and dorsal root ganglion (DRG) neurons. Administration of a low BTZ concentration (5 nM; similar to concentrations in clinical use) caused dedifferentiation of cultured SCs, returning mature SCs to an immature state. In cultured SGCs, BTZ increased glial fibrillary acidic protein (GFAP) levels without inducing the release of inflammatory cytokines or chemokines. In macrophages, BTZ caused little inflammatory response. Finally, in DRG neurons, BTZ strongly suppressed the expression levels of sensor and transducer ion channels without affecting cell morphology. Taken together, low concentrations of BTZ can cause SC dedifferentiation (i.e., demyelination), increased GFAP level in SGC, and decreased expression levels of sensor and transducer ion channels in DRG neurons (i.e., numbness feeling). Thus, we have reported, for the first time, specific effects of BTZ on peripheral nervous system cells, thereby contributing to a better understanding of the initiating mechanism of BIPN.


Assuntos
Gânglios Espinais , Doenças do Sistema Nervoso Periférico , Humanos , Bortezomib/efeitos adversos , Gânglios Espinais/metabolismo , Neurônios , Neuroglia/metabolismo , Células de Schwann/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Macrófagos/metabolismo , Canais Iônicos
6.
Biol Pharm Bull ; 46(8): 1049-1056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37532556

RESUMO

Bortezomib, an anticancer drug for multiple myeloma and mantle cell lymphoma, causes severe adverse events and leads to peripheral neuropathy. The associated neuropathy limits the use of bortezomib and could lead to discontinuation of the treatment; therefore, effective intervention is crucial. In the present study, we statistically searched for a drug that could alleviate bortezomib-induced peripheral neuropathy using adverse event self-reports. We observed that specific inhibitors of the mechanistic target of rapamycin (mTOR) lowered the incidence of bortezomib-induced peripheral neuropathy. These findings were experimentally validated in mice, which exhibited long-lasting mechanical hypersensitivity after repeated bortezomib treatment. This effect was inhibited for hours after a systemic injection with rapamycin or everolimus in a dose-dependent manner. Bortezomib-induced allodynia was accompanied by the activation of spinal astrocytes, and intrathecal injection of mTOR inhibitors or an inhibitor of ribosomal protein S6 kinase 1, a downstream target of mTOR, exhibited considerable analgesic effects in a dose-dependent manner. These results suggest that mTOR inhibitors, which are readily available to patients prescribed bortezomib, are one of the most effective therapeutics for bortezomib-induced peripheral neuropathy.


Assuntos
Antineoplásicos , Bortezomib , Doenças do Sistema Nervoso Periférico , Animais , Camundongos , Antineoplásicos/efeitos adversos , Bortezomib/efeitos adversos , Inibidores de MTOR , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
7.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834875

RESUMO

Abnormalities in the peripheral immune system are involved in the pathophysiology of fibromyalgia, although their contribution to the painful symptoms remains unknown. Our previous study reported the ability of splenocytes to develop pain-like behavior and an association between the central nervous system (CNS) and splenocytes. Since the spleen is directly innervated by sympathetic nerves, this study aimed to examine whether adrenergic receptors are necessary for pain development or maintenance using an acid saline-induced generalized pain (AcGP) model (an experimental model of fibromyalgia) and whether the activation of these receptors is also essential for pain reproduction by the adoptive transfer of AcGP splenocytes. The administration of selective ß2-blockers, including one with only peripheral action, prevented the development but did not reverse the maintenance of pain-like behavior in acid saline-treated C57BL/6J mice. Neither a selective α1-blocker nor an anticholinergic drug affects the development of pain-like behavior. Furthermore, ß2-blockade in donor AcGP mice eliminated pain reproduction in recipient mice injected with AcGP splenocytes. These results suggest that peripheral ß2-adrenergic receptors play an important role in the efferent pathway from the CNS to splenocytes in pain development.


Assuntos
Fibromialgia , Receptores Adrenérgicos beta 2 , Camundongos , Animais , Receptores Adrenérgicos beta 2/metabolismo , Fibromialgia/metabolismo , Baço/metabolismo , Camundongos Endogâmicos C57BL , Receptores Adrenérgicos/metabolismo , Dor/metabolismo , Sistema Nervoso Central/metabolismo , Sistema Nervoso Simpático/metabolismo , Receptores Adrenérgicos beta/metabolismo , Antagonistas Adrenérgicos beta/farmacologia
8.
J Neurosci ; 41(12): 2780-2794, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33563722

RESUMO

Repetitive behavior is a widely observed neuropsychiatric symptom. Abnormal dopaminergic signaling in the striatum is one of the factors associated with behavioral repetition; however, the molecular mechanisms underlying the induction of repetitive behavior remain unclear. Here, we demonstrated that the NOX1 isoform of the superoxide-producing enzyme NADPH oxidase regulated repetitive behavior in mice by facilitating excitatory synaptic inputs in the central striatum (CS). In male C57Bl/6J mice, repeated stimulation of D2 receptors induced abnormal behavioral repetition and perseverative behavior. Nox1 deficiency or acute pharmacological inhibition of NOX1 significantly shortened repeated D2 receptor stimulation-induced repetitive behavior without affecting motor responses to a single D2 receptor stimulation. Among brain regions, Nox1 showed enriched expression in the striatum, and repeated dopamine D2 receptor stimulation further increased Nox1 expression levels in the CS, but not in the dorsal striatum. Electrophysiological analyses revealed that repeated D2 receptor stimulation facilitated excitatory inputs in the CS indirect pathway medium spiny neurons (iMSNs), and this effect was suppressed by the genetic deletion or pharmacological inhibition of NOX1. Nox1 deficiency potentiated protein tyrosine phosphatase activity and attenuated the accumulation of activated Src kinase, which is required for the synaptic potentiation in CS iMSNs. Inhibition of NOX1 or ß-arrestin in the CS was sufficient to ameliorate repetitive behavior. Striatal-specific Nox1 knockdown also ameliorated repetitive and perseverative behavior. Collectively, these results indicate that NOX1 acts as an enhancer of synaptic facilitation in CS iMSNs and plays a key role in the molecular link between abnormal dopamine signaling and behavioral repetition and perseveration.SIGNIFICANCE STATEMENT Behavioral repetition is a form of compulsivity, which is one of the core symptoms of psychiatric disorders, such as obsessive-compulsive disorder. Perseveration is also a hallmark of such disorders. Both clinical and animal studies suggest important roles of abnormal dopaminergic signaling and striatal hyperactivity in compulsivity; however, the precise molecular link between them remains unclear. Here, we demonstrated the contribution of NOX1 to behavioral repetition induced by repeated stimulation of D2 receptors. Repeated stimulation of D2 receptors upregulated Nox1 mRNA in a striatal subregion-specific manner. The upregulated NOX1 promoted striatal synaptic facilitation in iMSNs by enhancing phosphorylation signaling. These results provide a novel mechanism for D2 receptor-mediated excitatory synaptic facilitation and indicate the therapeutic potential of NOX1 inhibition in compulsivity.


Assuntos
Comportamento Compulsivo/metabolismo , Locomoção/fisiologia , NADPH Oxidase 1/biossíntese , NADPH Oxidases/biossíntese , Receptores de Dopamina D2/biossíntese , Sinapses/metabolismo , Animais , Células Cultivadas , Comportamento Compulsivo/induzido quimicamente , Comportamento Compulsivo/psicologia , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/toxicidade , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 1/antagonistas & inibidores , NADPH Oxidases/antagonistas & inibidores , Pirazolonas/farmacologia , Piridonas/farmacologia , Receptores de Dopamina D2/agonistas , Sinapses/efeitos dos fármacos
9.
Glia ; 70(9): 1666-1680, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35506586

RESUMO

Astrocytes are glial cells that serve homeostatic functions in the central nervous system (CNS). Recent research, however, suggests that under pathological conditions, astrocytes are stimulated by various factors and actively participate in CNS inflammation. In the present study, we found that astrocytes upregulate various inflammatory factors including prostaglandin E2 (PGE2 ) by co-stimulation with tumor necrosis factor-alpha (TNFα) and interleukin-1alpha (IL1α). These TNFα/IL1α-stimulated astrocytes also showed increased Ca2+ release from the endoplasmic reticulum (ER) and increased expression of Orai2, a member of the store-operated calcium channel (SOCC) family. To reveal the role of Orai2, we used astrocytes in which Orai2 was knocked-down (KD) or knocked-out (KO). The expression of the prostaglandin E synthase Ptges and the production of PGE2 were higher in Orai2-KD astrocytes than in WT astrocytes when stimulated with TNFα and IL1α. Orai2-KO astrocytes also showed increased expression of Ptges and increased PGE2 production. The expression of Ptgs2, another PGE2 synthetic enzyme, was also upregulated in Orai2-KO astrocytes. Moreover, Orai2-KO astrocytes showed increased store-operated calcium entry (SOCE) and increased Orai1 expression. These results suggest that Orai2 is upregulated in TNFα/IL1α-stimulated astrocytes and reduces PGE2 production to some extent, modulating CNS inflammation. Our findings may aid in understanding how astrocytes are associated with inflammatory responses, and the identification of new targets that modulate astrocytic reactivity.


Assuntos
Astrócitos , Interleucina-1alfa , Proteína ORAI2 , Prostaglandinas E , Fator de Necrose Tumoral alfa , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Inflamação , Interleucina-1alfa/metabolismo , Interleucina-1alfa/farmacologia , Camundongos , Proteína ORAI2/metabolismo , Prostaglandinas E/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
10.
Biol Pharm Bull ; 45(10): 1590-1595, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36184520

RESUMO

Transcriptional regulatory elements, including promoters and enhancers, play a key role in the cell-type specific regulation of the transcriptome. Application of rapidly evolving genetic tools, such as optogenetic/chemogenetic actuators and fluorescent reporters to elucidate the function of cell subtypes in vivo necessitates cell-type specific promoters or enhancers. In this context, methods for genome-wide functional screening of cis-regulatory elements, including enhancers, are of utmost importance. In this study, we describe a novel method for genome-wide functional screening of enhancer activity in vivo with minimal handling. Application of the method to cells from different brain structures and subsequent differential analysis allow identification of active enhancers in the target tissue or brain structures. To demonstrate proof of concept, we applied this method to samples from the dorsal raphe nucleus (DRN) and the medial prefrontal cortex of the mouse brain and successfully identified six enhancers with highly biased activity towards the dorsal raphe nucleus. Considering that these two structures consist of largely similar cell types whereas serotonin and dopamine neurons exist only in the DRN, our results confirm the validity of this method in identifying cell-type specific and brain-structure specific enhancers. Overall, this method will be helpful in identifying cis-regulatory elements suitable for cell-type specific manipulations.


Assuntos
Elementos Facilitadores Genéticos , Serotonina , Animais , Camundongos , Transcriptoma
11.
Biol Pharm Bull ; 45(8): 1124-1132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35908894

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by core symptoms, including impairments in social behavior and repetitive interests. Recent studies have revealed that individuals with ASD also display decreased empathy, ultimately leading to difficulties in social relationships; however, another report indicated that individuals with ASD have enhanced emotional empathy. Nonetheless, the neurobiological mechanisms underlying altered empathy in individuals with ASD remain unclear. In this study, we assessed empathy-like behaviors in valproic acid (VPA)-treated mice-a mouse model of ASD with observational fear learning. We then investigated the brain regions and signaling systems responsible for the altered empathy-like behaviors in VPA-treated mice. As a result, mice prenatally exposed to VPA displayed increased empathy-like behaviors, which were not attributed to altered sensitivity to auditory stimuli or enhanced memory for pain-related contexts. Immunohistochemical analysis revealed that the number of c-Fos positive oxytocinergic neurons in the paraventricular nucleus of the hypothalamus (PVN) was significantly higher in VPA-treated mice after observational fear learning. Finally, we found that pretreatment with L-368899, an antagonist of the oxytocin receptor, repressed the empathetic behavior in VPA-treated mice. These results suggest that VPA-treated ASD model animals showed increased emotional empathy-like behaviors through the hyperactivation of PVN oxytocinergic neurons for the first time. Further investigation of this hyperactivity will help to identify extrinsic stimuli and the condition which are capable of activation of PVN oxytocinergic neurons and to identify novel approach to enhance oxytocin signaling, which ultimately pave the way to development of novel therapy for ASD.


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Animais , Transtorno do Espectro Autista/induzido quimicamente , Comportamento Animal , Modelos Animais de Doenças , Empatia , Feminino , Humanos , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Comportamento Social , Ácido Valproico/farmacologia
12.
Biochem Biophys Res Commun ; 568: 167-173, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34237486

RESUMO

Lysophosphatidic acid (LPA) plays a critical role in developing and maintaining chronic pain in various animal models. Previous studies have reported that cytosolic and calcium-independent phospholipase A2 (PLA2) is involved in the LPA receptor-mediated amplification of LPA production in the spinal dorsal horn (SDH) after nerve injury, while the involvement of secreted PLA2 (sPLA2) remains unclear. The present study revealed that only sPLA2 -III among 11 species of PLA2 showed a significant upregulation of gene expression in the SDH. Intraspinal injection of adeno-associated virus-miRNA targeting sPLA2-III prevented hyperalgesia and unique hypoalgesia in mice treated with partial sciatic nerve ligation. In addition, intrathecal treatment with antisense oligodeoxynucleotide or siRNA targeting sPLA2-III significantly reversed the established thermal hyperalgesia. In the high-throughput screening of sPLA2-III inhibitors from the chemical library, we identified two hit compounds. Through in vitro characterization of PLA2 inhibitor profiles and in vivo assessment of the anti-hyperalgesic effects of known PLA2 inhibitors as well as hit compounds, sPLA2-III was found to be a novel therapeutic target molecule for the treatment of Neuropathic pain.


Assuntos
Fosfolipases A2 do Grupo III/metabolismo , Neuralgia/metabolismo , Animais , Expressão Gênica , Técnicas de Silenciamento de Genes , Fosfolipases A2 do Grupo III/genética , Masculino , Camundongos Endogâmicos C57BL , Neuralgia/genética , Neuralgia/terapia , Regulação para Cima
13.
J Pharmacol Sci ; 146(4): 200-205, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34116733

RESUMO

Gentle touch such as stroking of the skin produces a pleasant feeling, which is detected by a rare subset of sensory neurons that express Mas-related G protein-coupled receptor B4 (MrgprB4) in mice. We examined small populations of MrgprB4-positive neurons in the trigeminal ganglion and the dorsal root ganglion, and most of these were sensitive to transient receptor potential ankyrin 1 (TRPA1) agonist but not TRPV1, TRPM8, or TRPV4 agonists. Deficiency of MrgprB4 did not affect noxious pain or itch behaviors in the hairless plantar and hairy cheek. Although behavior related to acetone-induced cold sensing in the hind paw was not changed, unpleasant sensory behaviors in response to acetone application or sucrose splash to the cheek were significantly enhanced in Mrgprb4-knockout mice as well as in TRPA1-knockout mice. These results suggest that MrgprB4 in the trigeminal neurons produces pleasant sensations in cooperation with TRPA1, rather than noxious or cold sensations. Pleasant sensations may modulate unpleasant sensations on the cheek via MrgprB4.


Assuntos
Expressão Gênica/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Sensação/genética , Sensação/fisiologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/fisiologia , Gânglio Trigeminal/citologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenômenos Fisiológicos da Pele/genética , Canal de Cátion TRPA1/metabolismo
14.
Biol Pharm Bull ; 44(2): 181-187, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33518671

RESUMO

Oligodendrocyte precursor cells (OPCs) are glial cells that differentiate into oligodendrocytes and myelinate axons. The number of OPCs is reportedly increased in brain lesions in some demyelinating diseases and during ischemia; however, these cells also secrete cytokines and elicit both protective and deleterious effects in response to brain injury. The mechanism regulating the behaviors of OPCs in physiological and pathological conditions must be elucidated to control these cells and to treat demyelinating diseases. Here, we focused on transient receptor potential melastatin 3 (TRPM3), a Ca2+-permeable channel that is activated by the neurosteroid pregnenolone sulfate (PS) and body temperature. Trpm3+/Pdgfra+ OPCs were detected in the cerebral cortex (CTX) and corpus callosum (CC) of P4 and adult rats by in situ hybridization. Trpm3 expression was detected in primary cultured rat OPCs and was increased by treatment with tumor necrosis factor α (TNFα). Application of PS (30-100 µM) increased the Ca2+ concentration in OPCs and this effect was inhibited by co-treatment with the TRP channel blocker Gd3+ (100 µM) or the TRPM3 inhibitor isosakuranetin (10 µM). Stimulation of TRPM3 with PS (50 µM) did not affect the differentiation or migration of OPCs. The number of Trpm3+ OPCs was markedly increased in demyelinated lesions in an endothelin-1 (ET-1)-induced ischemic rat model. In conclusion, TRPM3 is functionally expressed in OPCs in vivo and in vitro and is upregulated in inflammatory conditions such as ischemic insults and TNFα treatment, implying that TRPM3 is involved in the regulation of specific behaviors of OPCs in pathological conditions.


Assuntos
Córtex Cerebral/patologia , Doenças Desmielinizantes/patologia , Células Precursoras de Oligodendrócitos/patologia , Acidente Vascular Cerebral Lacunar/patologia , Canais de Cátion TRPM/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/citologia , Corpo Caloso/irrigação sanguínea , Corpo Caloso/citologia , Corpo Caloso/patologia , Doenças Desmielinizantes/etiologia , Modelos Animais de Doenças , Humanos , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Pregnenolona/farmacologia , Cultura Primária de Células , Ratos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Acidente Vascular Cerebral Lacunar/complicações , Canais de Cátion TRPM/agonistas , Regulação para Cima
15.
Int J Urol ; 28(1): 107-114, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33026125

RESUMO

OBJECTIVE: To study the role of transient receptor potential melastatin 2 in bladder function and inflammation-associated hypersensitivity. METHODS: We evaluated physiological function of the bladder and intravesical lipopolysaccharide-induced inflammatory nociceptive responses in female wild-type and transient receptor potential melastatin 2-knockout mice. In vivo frequency/volume and decerebrated unanesthetized cystometry measurements, as well as in vitro detrusor strip functional studies, were carried out to evaluate bladder function. Mice received intravesical lipopolysaccharide (2.0 mg/mL) or saline instillation to evaluate responses to bladder inflammation. Voiding and bladder pain-like behaviors, cystometry measurements and histological evaluation were carried out before and after intravesical lipopolysaccharide instillation. RESULTS: Few phenotypic differences in in vivo and in vitro physiological function were found between the two genotypes. Comparison of measurements taken before and 24-48 h after intravesical lipopolysaccharide instillation showed that voiding parameters did not change in transient receptor potential melastatin 2-knockout mice, whereas an increased voiding frequency was observed in wild-type mice. At 24 h after intravesical lipopolysaccharide instillation, the numbers of bladder pain-like behaviors and of infiltrated inflammatory cells in the bladder submucosal layer were significantly increased, and the voided volume and the intercontraction interval were significantly decreased on cystometry measurements in wild-type mice compared with those in both transient receptor potential melastatin 2-knockout mice and in wild-type mice treated with saline instillation. CONCLUSIONS: Although the physiological roles of transient receptor potential melastatin 2 channels in the bladder might be limited, inflammation and associated hypersensitivity of the bladder caused by intravesical lipopolysaccharide instillation are attenuated in transient receptor potential melastatin 2-knockout mice, suggesting pathophysiological roles of transient receptor potential melastatin 2 channels in these processes.


Assuntos
Cistite , Lipopolissacarídeos , Administração Intravesical , Animais , Feminino , Lipopolissacarídeos/toxicidade , Camundongos , Micção
16.
Biochem Biophys Res Commun ; 529(3): 590-595, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32736678

RESUMO

Intracerebral hemorrhage (ICH) is one of the most severe subtypes of stroke with high morbidity and mortality. Although a lot of drug discovery studies have been conducted, the drugs with satisfactory therapeutic effects for motor paralysis after ICH have yet to reach clinical application. Transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable cation channel and activated by hypoosmolarity and warm temperature, is expressed in various cell types. The present study investigated whether TRPV4 would participate in the brain damage in a mouse model of ICH. ICH was induced by intrastriatal treatment of collagenase. Administration of GSK1016790A, a selective TRPV4 agonist, attenuated neurological and motor deficits. The inhibitory effects of the TRPV4 agonist in collagenase-injected WT mice were completely disappeared in TRPV4-KO mice. The TRPV4 agonist did not alter brain injury volume and brain edema at 1 and 3 days after ICH induction. The TRPV4 agonist did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 3 days after ICH induction. Quantitative RT-PCR experiments revealed that the TRPV4 agonist significantly upregulated the expression level of c-fos, a marker of neuronal activity, while the agonist gave no effects on the expression level of cytokines/chemokines at 1 day after ICH induction, These results suggest that stimulation of TRPV4 would ameliorate ICH-induced brain injury, presumably by increased neuronal activity and TRPV4 provides a novel therapeutic target for the treatment for ICH.


Assuntos
Hemorragia Cerebral/complicações , Leucina/análogos & derivados , Transtornos Motores/prevenção & controle , Doenças do Sistema Nervoso/prevenção & controle , Sulfonamidas/farmacologia , Canais de Cátion TRPV/agonistas , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Hemorragia Cerebral/induzido quimicamente , Colagenases , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Leucina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos Motores/etiologia , Doenças do Sistema Nervoso/etiologia , Proteínas Proto-Oncogênicas c-fos/genética , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
17.
Bioorg Med Chem Lett ; 30(24): 127562, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32971260

RESUMO

Myelin is a lipid multilayer involved in the rate of nerve transmission, and its loss is a pathological feature of multiple sclerosis in brains. Since in vivo imaging of myelin may be useful for drug development, early diagnosis, and monitoring the disease stage, we designed, synthesized, and evaluated eight novel radioiodinated 3-phenylcoumarin derivatives as imaging probes targeting myelin. In the biodistribution study using normal mice, all compounds displayed sufficient brain uptake, ranging from 2.5 to 5.0% ID/g, at 2 min postinjection. On ex vivo autoradiography, [125I]18 and [125I]21, which have a dimethylamino group, showed high binding affinity for myelin in the normal mouse brain. In addition, the radioactivity accumulation of [125I]21 in the white matter of the spinal cord in the experimental autoimmune encephalomyelitis mice was lower than that in naive mice. These results suggest that [123I]21 shows potential as a single photon emission computed tomography probe targeting myelin.


Assuntos
Cumarínicos/química , Encefalomielite Autoimune Experimental/diagnóstico , Radioisótopos do Iodo/química , Esclerose Múltipla/diagnóstico , Bainha de Mielina/patologia , Animais , Autorradiografia , Encéfalo/metabolismo , Encéfalo/patologia , Cumarínicos/síntese química , Cumarínicos/farmacocinética , Encefalomielite Autoimune Experimental/metabolismo , Radioisótopos do Iodo/farmacocinética , Camundongos , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
18.
Biol Pharm Bull ; 43(3): 362-365, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32115497

RESUMO

Recent pharmacological studies have been developed based on finding new disease-related genes, accompanied by the production of gene-manipulated disease model animals and high-affinity ligands for the target proteins. However, the emergence of this gene-based strategy in drug development has led to the rapid depletion of drug target molecules. To overcome this, we have attempted to utilize clinical big data to explore a novel and unexpected hypothesis of drug-drug interaction that would lead to drug repositioning. Here, we introduce our data-driven approach in which adverse event self-reports are statistically analyzed and compared in order to find and validate new drug targets. The hypotheses provided by such a data-driven approach will likely impact the style of future drug development and pharmaceutical study.


Assuntos
Biologia Computacional/métodos , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Sistemas de Notificação de Reações Adversas a Medicamentos , Animais , Bases de Dados como Assunto , Reposicionamento de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Genômica , Humanos , Estados Unidos , United States Food and Drug Administration
19.
Addict Biol ; 25(1): e12723, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30734456

RESUMO

In drug addiction, environmental stimuli previously associated with cocaine use readily elicit cocaine-associated memories, which persist long after abstinence and trigger cocaine craving and consumption. Although previous studies suggest that the medial prefrontal cortex (mPFC) is involved in the expression of cocaine-addictive behaviors, it remains unclear whether excitatory and inhibitory neurons in the mPFC are causally related to the formation and retrieval of cocaine-associated memories. To address this issue, we used the designer receptors exclusively activated by designer drugs (DREADD) technology combined with a cocaine-induced conditioned place preference (CPP) paradigm. We suppressed mPFC neuronal activity in a cell-type- and timing-dependent manner. C57BL/6J wild-type mice received bilateral intra-mPFC infusion of an adeno-associated virus (AAV) expressing inhibitory DREADD (hM4Di) under the control of CaMKII promotor to selectively suppress mPFC pyramidal neurons. GAD67-Cre mice received bilateral intra-mPFC infusion of a Cre-dependent AAV expressing hM4Di to specifically silence GABAergic neurons. Chemogenetic suppression of mPFC pyramidal neurons significantly attenuated both the acquisition and expression of cocaine CPP, while suppression of mPFC GABAergic neurons affected neither the acquisition nor expression of cocaine CPP. Moreover, chemogenetic inhibition of mPFC glutamatergic neurons did not affect the acquisition and expression of lithium chloride-induced conditioned place aversion. These results suggest that the activation of glutamatergic, but not GABAergic, neurons in the mPFC mediates both the formation and retrieval of cocaine-associated memories.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Cocaína/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Memória/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiopatologia , Animais , Modelos Animais de Doenças , Inibidores da Captação de Dopamina/farmacologia , Eletrofisiologia , Imunofluorescência , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Int J Mol Sci ; 21(6)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245184

RESUMO

BACKGROUND: Reward processing is fundamental for animals to survive and reproduce. Many studies have shown the importance of dorsal raphe nucleus (DRN) serotonin (5-HT) neurons in this process, but the strongly correlative link between the activity of DRN 5-HT neurons and rewarding/aversive potency is under debate. Our primary objective was to reveal this link using two different strategies to transduce DRN 5-HT neurons. METHODS: For transduction of 5-HT neurons in wildtype mice, adeno-associated virus (AAV) bearing the mouse tryptophan hydroxylase 2 (TPH2) gene promoter was used. For transduction in Tph2-tTA transgenic mice, AAVs bearing the tTA-dependent TetO enhancer were used. To manipulate the activity of 5-HT neurons, optogenetic actuators (CheRiff, eArchT) were expressed by AAVs. For measurement of rewarding/aversive potency, we performed a nose-poke self-stimulation test and conditioned place preference (CPP) test. RESULTS: We found that stimulation of DRN 5-HT neurons and their projections to the ventral tegmental area (VTA) increased the number of nose-pokes in self-stimulation test and CPP scores in both targeting methods. Concomitantly, CPP scores were decreased by inhibition of DRN 5-HT neurons and their projections to VTA. CONCLUSION: Our findings indicate that the activity of DRN 5-HT neurons projecting to the VTA is a key modulator of balance between reward and aversion.


Assuntos
Núcleo Dorsal da Rafe/fisiologia , Neurônios/fisiologia , Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo , Área Tegmentar Ventral/fisiologia , Animais , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/fisiologia , Escala de Avaliação Comportamental , Núcleo Central da Amígdala/metabolismo , Núcleo Central da Amígdala/fisiologia , Dependovirus/genética , Núcleo Dorsal da Rafe/metabolismo , Elementos Facilitadores Genéticos , Vetores Genéticos , Região Hipotalâmica Lateral/metabolismo , Região Hipotalâmica Lateral/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia , Optogenética , Regiões Promotoras Genéticas , Recompensa , Serotonina/fisiologia , Triptofano Hidroxilase/genética , Área Tegmentar Ventral/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa