Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 86(4): 1937-42, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24498852

RESUMO

Glycosylation and phosphorylation are important post-translational modifications in biological processes and biomarker research. The difficulty in analyzing these modifications is mainly their low abundance and dissociation of labile regions such as sialic acids or phosphate groups. One solution in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is to improve matrices for glycopeptides, carbohydrates, and phosphopeptides by increasing the sensitivity and suppressing dissociation of the labile regions. Recently, a liquid matrix 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA) (3-AQ/CHCA), introduced by Kolli et al. in 1996, has been reported to increase sensitivity for carbohydrates or phosphopeptides, but it has not been systematically evaluated for glycopeptides. In addition, 3-AQ/CHCA enhances the dissociation of labile regions. In contrast, a liquid matrix 1,1,3,3-tetramethylguanidium (TMG, G) salt of p-coumaric acid (CA) (G3CA) was reported to suppress dissociation of sulfate groups or sialic acids of carbohydrates. Here we introduce a liquid matrix 3-AQ/CA for glycopeptides, carbohydrates, and phosphopeptides. All of the analytes were detected as [M + H](+) or [M - H](-) with higher or comparable sensitivity using 3-AQ/CA compared with 3-AQ/CHCA or 2,5-dihydroxybenzoic acid (2,5-DHB). The sensitivity was increased 1- to 1000-fold using 3-AQ/CA. The dissociation of labile regions such as sialic acids or phosphate groups and the fragmentation of neutral carbohydrates were suppressed more using 3-AQ/CA than using 3-AQ/CHCA or 2,5-DHB. 3-AQ/CA was thus determined to be an effective MALDI matrix for high sensitivity and the suppression of dissociation of labile regions in glycosylation and phosphorylation analyses.


Assuntos
Carboidratos/análise , Ácidos Cumáricos/química , Glicopeptídeos/análise , Fosfopeptídeos/análise , Quinolonas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Animais , Carboidratos/genética , Bovinos , Glicopeptídeos/genética , Humanos , Dados de Sequência Molecular , Propionatos
2.
Anal Bioanal Chem ; 405(12): 4289-93, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23380952

RESUMO

Protein glycosylation analysis is important for elucidating protein function and molecular mechanisms in various biological processes. We previously developed a glycan analysis method using a 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid liquid matrix (3-AQ/CHCA LM) and applied it to the quantitative glycan profiling of glycoproteins. However, information concerning glycosylation sites is lost; glycopeptide analysis is therefore required to identify the glycosylation sites in glycoproteins. Human epidermal growth factor receptor 2 (HER2) is a glycoprotein that plays a role in the regulation of cell proliferation, differentiation, and migration. Several reports have described the structure of HER2, but the structures of N-glycans attached to this protein remain to be fully elucidated. In this study, 3-AQ/CHCA LM was applied to tryptic digests of HER2 to reveal its N-glycosylation state and to evaluate the utility of this LM in characterizing glycopeptides. Peptide sequence coverage was considerably improved compared to analysis of HER2 using α-cyano-4-hydroxycinnamic acid or 2,5-dihydroxybenzoic acid. Most of the peaks observed using only this LM were localized at the inner or outer regions of sample spots. Furthermore, five of the peptide peaks that were enriched within the inner region were confirmed to be glycosylated by MS/MS analysis. Three glycosylation sites were identified and their glycan structures were elucidated. The reduction in sample complexity by on-target separation allowed for higher sequence coverage, resulting in effective detection and characterization of glycopeptides. In conclusion, these results demonstrate that MS-based glycoprotein analysis using 3-AQ/CHCA is an effective method to identify glycosylation sites in proteins and to elucidate the glycan structures of glycoproteins in complex samples.


Assuntos
Glicoproteínas/química , Polissacarídeos/análise , Receptor ErbB-2/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Aminoquinolinas/química , Sequência de Carboidratos , Linhagem Celular , Ácidos Cumáricos/química , Glicopeptídeos/química , Glicosilação , Humanos , Dados de Sequência Molecular
3.
Anal Chem ; 84(21): 9453-61, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23072501

RESUMO

Negative-ion fragmentation of underivatized N-glycans has been proven to be more informative than positive-ion fragmentation. Fluorescent labeling via reductive amination is often employed for glycan analysis, but little is known about the influence of the labeling group on negative-ion fragmentation. We previously demonstrated that the on-target glycan-labeling method using 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid (3AQ/CHCA) liquid matrix enables highly sensitive, rapid, and quantitative N-glycan profiling analysis. The current study investigates the suitability of 3AQ-labeled N-glycans for structural analysis based on negative-ion collision-induced dissociation (CID) spectra. 3AQ-labeled N-glycans exhibited simple and informative CID spectra similar to those of underivatized N-glycans, with product ions due to cross-ring cleavages of the chitobiose core and ions specific to two antennae (D and E ions). The interpretation of diagnostic fragment ions suggested for underivatized N-glycans could be directly applied to the 3AQ-labeled N-glycans. However, fluorescently labeled N-glycans by conventional reductive amination, such as 2-aminobenzamide (2AB)- and 2-pyrydilamine (2PA)-labeled N-glycans, exhibited complicated CID spectra consisting of numerous signals formed by dehydration and multiple cleavages. The complicated spectra of 2AB- and 2PA-labeled N-glycans was found to be due to their open reducing-terminal N-acetylglucosamine (GlcNAc) ring, rather than structural differences in the labeling group in the N-glycan derivative. Finally, as an example, the on-target 3AQ labeling method followed by negative-ion CID was applied to structurally analyze neutral N-glycans released from human epidermal growth factor receptor type 2 (HER2) protein. The glycan-labeling method using 3AQ-based liquid matrix should facilitate highly sensitive quantitative and qualitative analyses of glycans.


Assuntos
Aminoquinolinas/química , Polissacarídeos/análise , Polissacarídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Humanos , Fragmentos de Peptídeos/química , Receptor ErbB-2/química , Coloração e Rotulagem
4.
Anal Chem ; 84(16): 7146-51, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22830976

RESUMO

Protein glycosylation is a crucial phenomenon for understanding protein functions, since its patterns and degree are associated with many biological processes, such as intercellular signaling and immune response. We previously reported a novel glycan-labeling method using a 3-ainoquinoline/α-cyano-4-hydroxycinnamic acid (3-AQ/CHCA) liquid matrix for highly sensitive detection by matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry (MS). In the present study, we examined the practicality of this method for qualitative and quantitative glycan profile analysis. We first investigated the reproducibility of the data for 16 N-glycans prepared from human epidermal growth factor receptor type 2 (HER2). All of the data obtained in intra-assays and interassays were highly correlated with statistical significance (R(2) > 0.9, p < 0.05). In addition, the HER2 glycosylation pattern differed significantly between different breast cancer cell lines SK-BR-3 and BT474 in a comparative analysis of profile data. Finally, the quantitative capability of this method was examined by using PA-labeled monosialylated N-glycan as an internal standard (IS). Using IS for AQ-labeled neutral and sialylated standard glycans, the ion peak intensity was highly linear (R(2) > 0.9) from 0.5 to 5000 fmol. Furthermore, using IS for HER2 N-glycans, all of the N-glycans were highly linear with their dilution factors (R(2) > 0.9). These results suggest that our developed AQ labeling method enabled rapid qualitative and quantitative analyses of glycans. This glycan analysis method should contribute to the field of biomarker discovery and biomedicine in applications such as quality control of biotechnology-based drugs.


Assuntos
Aminoquinolinas/química , Ácidos Cumáricos/química , Polissacarídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Linhagem Celular Tumoral , Glicosilação , Humanos , Polissacarídeos/metabolismo , Receptor ErbB-2/metabolismo , Reprodutibilidade dos Testes , Coloração e Rotulagem , Fatores de Tempo
5.
Anal Chem ; 83(10): 3663-7, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21506551

RESUMO

In glycomics, mass spectrometry is an indispensable tool for high throughput analyses. Generally speaking, glycans contain many hydroxyl groups and are more difficult to ionize than peptides. Derivatization of glycans has been useful for increasing sensitivity. However, it takes time to purify and causes loss of sample. Here, we show a highly sensitive aminoquinoline (AQ)-labeling method of glycans on a matrix-assisted laser desorption/ionization (MALDI) target using a liquid matrix 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA). It is a rapid procedure and reduces loss of sample material during the reaction process, especially in negative ion mode where 10 amol of monosialylated N-glycan were detected as AQ-labeled molecular ions. In addition, MS/MS of 10 amol of monosialylated N-glycan was achieved.


Assuntos
Aminoquinolinas/química , Ácidos Cumáricos/química , Polissacarídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Glicosilação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa