Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 13(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38928746

RESUMO

This study investigated the impact of different preheat treatments on the emulsifying and gel textural properties of soy protein with varying 11S/7S ratios. A mixture of 7S and 11S globulins, obtained from defatted soybean meal, was prepared at different ratios. The mixed proteins were subjected to preheating (75 °C, 85 °C, and 95 °C for 5 min) or non-preheating, followed by spray drying or non-spray drying. The solubility of protein mixtures rich in the 7S fraction tended to decrease significantly after heating at 85 °C, while protein mixtures rich in the 11S fraction showed a significant decrease after heating at 95 °C. Surprisingly, the emulsion stability index (ESI) of protein mixtures rich in the 7S fraction significantly improved twofold during processing at 75 °C. This study revealed a negative correlation between the emulsifying ability of soy protein and the 11S/7S ratio. For protein mixtures rich in either the 7S or the 11S fractions, gelling proprieties as well as emulsion activity index (EAI) and ESI showed no significant changes after spray drying; however, surface hydrophobicity was significantly enhanced following heating at 85 °C post-spray drying treatment. These findings provide insights into the alterations in gelling and emulsifying properties during various heating processes, offering great potential for producing soy protein ingredients with enhanced emulsifying ability and gelling property. They also contribute to establishing a theoretical basis for the standardized production of soy protein isolate with specific functional characteristics.

2.
AMB Express ; 12(1): 32, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244796

RESUMO

Biofilm is ubiquitous in industrial water systems, causing biofouling and leading to heat transfer efficiency decreases. In particular, multi-species living in biofilms could boost biomass production and enhance treatment resistance. In this study, a total of 37 bacterial strains were isolated from a cooling tower biofilm where acetic acid and propionic acid were detected as the main carbon sources. These isolates mainly belonged to Proteobacteria and Firmicutes, which occupied more than 80% of the total strains according to the 16S rRNA gene amplicon sequencing. Four species (Acinetobacter sp. CTS3, Corynebacterium sp. CTS5, Providencia sp. CTS12, and Pseudomonas sp. CTS17) were observed co-existing in the synthetic medium. Quantitative comparison of biofilm biomass from mono- and multi-species showed a synergistic effect towards biofilm formation among these four species. Three metabolic inhibitors (sulfathiazole, 3-bromopyruvic acid, and 3-nitropropionic acid) were employed to prevent biofilm formation based on their inhibitory effect on corresponding metabolic pathways. All of them displayed evident inhibition profiles to biofilm formation. Notably, combining these three inhibitors possessed a remarkable ability to block the multi-species biofilm development with lower concentrations, suggesting an enhanced effect appeared in simultaneous use. This study demonstrates that combined utilization of metabolic inhibitors is an alternative strategy to prevent multi-species biofilm formation.

3.
Microorganisms ; 9(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066089

RESUMO

A promising keratin-degrading strain from the genus Chryseobacterium (Chryseobacterium sp. KMC2) was investigated using comparative genomic tools against three publicly available reference genomes to reveal the keratinolytic potential for biosynthesis of valuable secondary metabolites. Genomic features and metabolic potential of four species were compared, showing genomic differences but similar functional categories. Eleven different secondary metabolite gene clusters of interest were mined from the four genomes successfully, including five common ones shared across all genomes. Among the common metabolites, we identified gene clusters involved in biosynthesis of flexirubin-type pigment, microviridin, and siderophore, showing remarkable conservation across the four genomes. Unique secondary metabolite gene clusters were also discovered, for example, ladderane from Chryseobacterium sp. KMC2. Additionally, this study provides a more comprehensive understanding of the potential metabolic pathways of keratin utilization in Chryseobacterium sp. KMC2, with the involvement of amino acid metabolism, TCA cycle, glycolysis/gluconeogenesis, propanoate metabolism, and sulfate reduction. This work uncovers the biosynthesis of secondary metabolite gene clusters from four keratinolytic Chryseobacterium species and shades lights on the keratinolytic potential of Chryseobacterium sp. KMC2 from a genome-mining perspective, can provide alternatives to valorize keratinous materials into high-value bioactive natural products.

4.
Sci Total Environ ; 761: 143281, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33190895

RESUMO

Keratin is an insoluble fibrous protein from natural environments, which can be recycled to value-added products by keratinolytic microorganisms. A microbial consortium with efficient keratinolytic activity was previously enriched from soil, but the genetic basis behind its remarkable degradation properties was not investigated yet. To identify the metabolic pathways involved in keratinolysis and clarify the observed synergy among community members, shotgun metagenomic sequencing was performed to reconstruct metagenome-assembled genomes. More than 90% genera of the enriched bacterial consortium were affiliated to Chryseobacterium, Stenotrophomonas, and Pseudomonas. Metabolic potential and putative keratinases were predicted from the metagenomic annotation, providing the genetic basis of keratin degradation. Furthermore, metabolic pathways associated with keratinolytic processes such as amino acid metabolism, disulfide reduction and urea cycle were investigated from seven high-quality metagenome-assembled genomes, revealing the potential metabolic cooperation related to keratin degradation. This knowledge deepens the understanding of microbial keratinolytic mechanisms at play in a complex community, pinpointing the significance of synergistic interactions, which could be further used to optimize industrial keratin degradation processes.


Assuntos
Queratinas , Metagenoma , Bactérias/genética , Biodegradação Ambiental , Metagenômica
5.
Front Microbiol ; 10: 3010, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998278

RESUMO

The capacity of microbes to degrade recalcitrant materials has been extensively explored for environmental remediation and industrial production. Significant achievements have been made with single strains, but focus is now going toward the use of microbial consortia owning to their functional stability and efficiency. However, assembly of simplified microbial consortia (SMC) from complex environmental communities is still far from trivial due to large diversity and the effect of biotic interactions. Here we propose a strategy, based on enrichment and dilution-to-extinction cultures, to construct SMC with reduced diversity for degradation of keratinous materials. Serial dilutions were performed on a keratinolytic microbial consortium pre-enriched from a soil sample, monitoring the dilution effect on community growth and enzymatic activities. An appropriate dilution regime (10-9) was selected to construct a SMC library from the enriched microbial consortium. Further sequencing analysis and keratinolytic activity assays demonstrated that obtained SMC displayed actual reduced microbial diversity, together with various taxonomic composition, and biodegradation capabilities. More importantly, several SMC possessed equivalent levels of keratinolytic efficiency compared to the initial consortium, showing that simplification can be achieved without loss of function and efficiency. This methodology is also applicable to other types of recalcitrant material degradation involving microbial consortia, thus considerably broadening its application scope.

6.
Bioresour Technol ; 270: 303-310, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30236907

RESUMO

Keratin refers to a group of insoluble and recalcitrant protein materials. Slaughterhouses produce large amount of keratinous byproducts, which are either disposed or poorly valorized through costly thermochemical processes for animal feed formulation. Learning from nature, keratinolytic microbial consortia stand as a cost-efficient and environmental friendly way to valorize this recalcitrant resource. Directed selection was applied to enrich soil-born microbial consortia, using sequential batch cultivations in keratin medium, while measuring enzymes activity and monitoring consortia compositions via 16S rRNA gene amplicon sequencing. A promising microbial consortium KMCG6, featuring mainly members of Bacteroidetes and Proteobacteria, was obtained. It possessed keratinolytic activity with <25% residual substrate remaining, which also displayed a high degradation reproducibility level after long-term cryopreservation. This work represents an advance in the field of α-keratin degradation with potential for practical applications.


Assuntos
Consórcios Microbianos , Bacteroidetes/genética , Biodegradação Ambiental , Consórcios Microbianos/genética , Proteobactérias/genética , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa