RESUMO
The incomplete blocking of small-sized polysulfides by pore size and the effect on Li+ transport are generally neglected when the size-sieving effect is employed to suppress the shuttling of polysulfides. Herein, ion-selective modified layers with pore sizes equal to, greater than, and less than 0.8 nm, respectively, on the polypropylene separator are fabricated to obtain the preferable pore size for separation of polysulfides and Li+. As a result, the modified layer with a pore size of 0.8 nm can efficiently inhibit the shuttling of polysulfides and simultaneously boost the diffusion of Li+ under the double effect of the size advantage and electrostatic shielding. Consequently, the battery using a separator with a modified layer having a pore size of 0.8 nm possesses a lower capacity attenuation of 0.047% after 1000 cycles at 2.0 C. This work serves as a vital guide for suppressing polysulfide shuttle using ion-selective sieving effects for lithium-sulfur batteries.
RESUMO
It is undeniable that the dissolution of polysulfides is beneficial in speeding up the conversion rate of sulfur in electrochemical reactions. But it also brings the bothersome "shuttle effect". Therefore, if polysulfides can be retained on the cathode side, the efficient utilization of the polysulfides can be guaranteed to achieve the excellent performance of lithium-sulfur batteries. Based on this idea, considerable methods have been developed to inhibit the shuttling of polysulfides. It is necessary to emphasize that no matter which method is used, the solvation mechanism, and existence forms of polysulfides are essential to analyze. Especially, it is important to clarify the sizes of different forms of polysulfides when using the size effect to inhibit the shuttling of polysulfides. In this review, a comprehensive summary and in-depth discussion of the solvation mechanism, the existing forms of polysulfides, and the influencing factors affecting polysulfides species are presented. Meanwhile, the size of diverse polysulfide species is sorted out for the first time. Depending on the size of polysulfides, tactics of using size effect in cathode, separator, and interlayer parts are elaborated. Finally, a design idea of materials pore size is proposed to satisfy the use of size effect to inhibit polysulfides shuttle.
RESUMO
Cardiovascular diseases (CVDs) and metabolic disorders (MDs) have surfaced as formidable challenges to global health, significantly imperiling human well-being. Recently, microneedles (MNs) have garnered substantial interest within the realms of CVD and MD research. Offering a departure from conventional diagnostic and therapeutic methodologies, MNs present a non-invasive, safe, and user-friendly modality for both monitoring and treatment, thereby marking substantial strides and attaining pivotal achievements in this avant-garde domain, while also unfurling promising avenues for future inquiry. This thorough review encapsulates the latest developments in employing MNs for both the surveillance and management of CVDs and MDs. Initially, it succinctly outlines the foundational principles and approaches of MNs in disease surveillance and therapy. Subsequently, it delves into the pioneering utilizations of MNs in the surveillance and management of CVDs and MDs. Ultimately, this discourse synthesizes and concludes the primary findings of this investigation, additionally prognosticating on the trajectory of MN technology.