Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharm Res ; 38(8): 1455-1466, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34398405

RESUMO

PURPOSE: To develop an in vitro culture system for tissue engineering to mimic the in vivo environment and evaluate the applicability of ultrasound and PLGA particle system. METHODS: For tissue engineering, large molecules such as growth factors for cell differentiation should be supplied in a controlled manner into the culture system, and the in vivo microenvironment need to be reproduced in the system for the regulation of cellular function. In this study, portable prototype ultrasound with low intensity was devised and tested for protein release from bovine serum albumin (BSA)-loaded poly(lactic-co-glycolic acid) (PLGA) particles. RESULTS: BSA-loaded PLGA particles were prepared using various types of PLGA reagents and their physicochemical properties were characterized including particle size, shape, or aqueous wetting profiles. The BSA-loaded formulation showed nano-ranged size distribution with optimal physical stability during storage period, and protein release behaviors in a controlled manner. Notably, the application of prototype ultrasound with low intensity influenced protein release patterns in the culture system containing the BSA-loaded PLGA formulation. The results revealed that the portable ultrasound set controlled by the computer could contribute for the protein delivery in the culture medium. CONCLUSIONS: This study suggests that combined application with ultrasound and protein-loaded PLGA encapsulation system could be utilized to improve culture system for tissue engineering or cell regeneration therapy.


Assuntos
Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Proteínas/administração & dosagem , Soroalbumina Bovina/química , Engenharia Tecidual/métodos , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Nanopartículas/química , Soroalbumina Bovina/administração & dosagem , Ultrassom
2.
Biochem Biophys Res Commun ; 505(3): 768-774, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30297109

RESUMO

Unlike stable and immobile cell line conditions, animal hearts contract and relax to pump blood throughout the body. Mitochondria play an essential role by producing biological energy molecules to maintain heart function. In this study, we assessed the effect of heart mimetic cyclic stretch on mitochondria in a cardiac cell line. To mimic the geometric and biomechanical conditions surrounding cells in vivo, cyclic stretching was performed on HL-1 murine cardiomyocytes seeded onto an elastic micropatterned substrate (10% elongation, 0.5 Hz, 4 h/day). Cell viability, semi-quantitative Q-PCR, and western blot analyses were performed in non-stimulated control and cyclic stretch stimulated HL-1 cell lines. Cyclic stretch significantly increased the expression of mitochondria biogenesis-related genes (TUFM, TFAM, ERRα, and PGC1-α) and mitochondria oxidative phosphorylation-related genes (PHB1 and CYTB). Western blot analysis confirmed that cyclic stretch increased protein levels of mitochondria biogenesis-related proteins (TFAM, and ERRα) and oxidative phosphorylation-related proteins (NDUFS1, UQCRC, and PHB1). Consequently, cyclic stretch increased mitochondrial mass and ATP production in treated cells. Our results suggest that cyclic stretch transcriptionally enhanced mitochondria biogenesis and oxidative phosphorylation without detrimental effects in a cultured cardiac cell line.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Biogênese de Organelas , Estresse Mecânico , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Expressão Gênica , Camundongos , Mitocôndrias Cardíacas/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/citologia , Fosforilação Oxidativa
3.
Biotechnol Lett ; 39(8): 1121-1127, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28540405

RESUMO

OBJECTIVE: To control the oscillatory behavior of the intracellular calcium ([Ca2+]i) concentration in endothelial cells via mechanical factors (i.e., various hydrostatic pressures) because [Ca2+]i in these cells is affected by blood pressure. RESULTS: Quantitative analyses based on real-time imaging showed that [Ca2+]i oscillation frequency and relative concentration increased significantly when 200 mm Hg pressure, mimicking hypertension, was applied for >10 min. Peak height and peak width decreased significantly at 200 mm Hg. These trends were more marked as the duration of the 200 mm Hg pressure was increased. However, no change was observed under normal blood pressure conditions 100 mm Hg. CONCLUSION: We generated a simple in vitro model to study [Ca2+]i behavior in relation to various pathologies and diseases by eliminating possible complicating effects induced by chemical cues.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Hipertensão/fisiopatologia , Modelos Biológicos , Fenômenos Biomecânicos , Pressão Sanguínea/fisiologia , Linhagem Celular , Desenho de Equipamento , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos
5.
Biotechnol Lett ; 38(1): 175-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26346661

RESUMO

OBJECTIVE: To investigate the expansion of hematopoietic stem/progenitor cells (HSPCs) from umbilical cord blood using extracellular matrix (ECM) protein-coated three-dimensional hierarchical scaffolds. RESULTS: The expansion of HSPCs was evaluated through total nucleated cell (TNC) expansion, immuno-phenotypic analysis, and clonogenic ability. After 7 days of culture, three-dimensional cultures with fibronectin-coated scaffolds achieved the highest fold increase in TNCs (164 ± 6.9 fold) and the highest CD45(+)CD34(+) (35 %) and CD34(+)CD38(-) (32 %) ratios. CONCLUSION: Three-dimensional hierarchical scaffolds were coated with ECM protein to simulate a biomimetic environment or niche, and had a significant effect on the expansion potential of HSPCs without changing their phenotype.


Assuntos
Materiais Biocompatíveis/síntese química , Técnicas de Cultura de Células/métodos , Fibronectinas/metabolismo , Células-Tronco Hematopoéticas/citologia , Cordão Umbilical/citologia , ADP-Ribosil Ciclase 1/metabolismo , Antígenos CD34/metabolismo , Técnicas de Cultura de Células/instrumentação , Proliferação de Células , Células-Tronco Hematopoéticas/imunologia , Humanos , Antígenos Comuns de Leucócito/metabolismo , Nicho de Células-Tronco , Propriedades de Superfície
6.
J Mater Sci Mater Med ; 27(3): 60, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26800691

RESUMO

Understanding the response of mesenchymal stem cells (MSCs) in the dynamic biomechanical vascular environment is important for vascular regeneration. Native vessel biomechanical stimulation in vitro is thought to be the most important contributor to successful endothelial differentiation of MSCs. However, the appropriate biomechanical stimulation conditions for differentiating MSCs into ECs have not been fully investigated. To accomplish an in vivo-like loading environment, a loading system was designed to apply flow induced stress and induce hMSC differentiation in vascular cells. Culturing MSCs on tubular scaffolds under flow-induced shear stress (2.5 dyne/cm(2)) for 4 days results in increased mRNA levels of EC markers (vWF, CD31, VE-cadherin and E-selectin) after one day. Furthermore, we investigated the effects of 2.5 dyne/cm(2) shear stress followed by 3% circumferential stretch for 3 days, and an additional 5% circumferential stretch for 4 days on hMSC differentiation into ECs. EC marker protein levels showed a significant increase after applying 5% stretch, while SMC markers were not present at levels sufficient for detection. Our results demonstrate that the expression of several hMSC EC markers cultured on double-layered tubular scaffolds were upregulated at the mRNA and protein levels with the application of fluid shear stress and cyclic circumferential stretch.


Assuntos
Diferenciação Celular/fisiologia , Células Endoteliais/fisiologia , Células-Tronco Mesenquimais/fisiologia , Resistência ao Cisalhamento , Células Endoteliais/citologia , Citometria de Fluxo , Corantes Fluorescentes , Regulação da Expressão Gênica/fisiologia , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Coloração e Rotulagem , Engenharia Tecidual/métodos
7.
Microsc Microanal ; 20(1): 219-27, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24279928

RESUMO

We investigated the structural complexity and texture of the cytoskeleton and nucleus in human mesenchymal stem cells during early phase differentiation into osteoblasts according to the differentiation-induction method: mechanical and/or chemical stimuli. For this, fractal dimension and a number of parameters utilizing the gray-level co-occurrence matrix (GLCM) were calculated based on single-cell images after confirmation of differentiation by immunofluorescence staining. The F-actin and nuclear fractal dimensions were greater in both stimulus groups compared with the control group. The GLCM values for energy and homogeneity were lower in fibers of the F-actin cytoskeleton, indicating a dispersed F-actin arrangement during differentiation. In the nuclei of both stimulus groups, higher values for energy and homogeneity were calculated, indicating that the chromatin arrangement was chaotic during the early phase of differentiation. It was shown and confirmed that combined stimulation with mechanical and chemical factors accelerated differentiation, even in the early phase. Fractal dimension analysis and GLCM methods have the potential to provide a framework for further investigation of stem cell differentiation.


Assuntos
Diferenciação Celular/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Fenômenos Biomecânicos/fisiologia , Núcleo Celular/fisiologia , Citoesqueleto/fisiologia , Fractais , Humanos , Células-Tronco Mesenquimais/fisiologia , Microscopia Confocal , Microscopia de Fluorescência , Osteoblastos/fisiologia
8.
Biotechnol Lett ; 35(11): 1817-22, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23881314

RESUMO

There are few studies regarding the effects of mechanical stimulation on cell migration although biochemical factors have been widely studied. We have investigated the effects of intermittent hydrostatic pressure (IHP) on mesenchymal stem cell migration with or without neighboring endothelial cells (EC). IHP promoted MSCs migration and the neighboring ECs helped with this. However, when IHP was applied to MSCs cultured with ECs, the opposite effect was observed. The concentration of stromal-derived factor-1 culture in medium was measured to explain the obtained results. SDF-1 concentration increased as IHP increased when MSCs were cultured alone. However, it decreased as IHP increased when MSCs and ECs were co-cultured. These results indicate that the mechanical environment should be considered when studying the migration of a cell type along with its biochemical environment.


Assuntos
Movimento Celular , Células-Tronco Mesenquimais/fisiologia , Quimiocina CXCL12/metabolismo , Meios de Cultura/química , Humanos , Pressão Hidrostática , Estresse Mecânico
9.
J Shoulder Elbow Surg ; 22(11): 1558-66, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23571082

RESUMO

BACKGROUND: The bioabsorbable suture anchor is probably one of the most commonly used tools in arthroscopic shoulder operations. However, there is controversy about whether the bioabsorbable anchor is replaced by bone. The object of this study is to evaluate bone ingrowth into the micropore bioabsorbable suture anchor and the differences in the biomechanical properties of a micropore anchor and a nonpore anchor. MATERIALS AND METHODS: A total of 16 microsized holes (diameter, 250 ± 50 µm; depth, 0.2 mm) were made on the bioabsorbable anchors with a microdrill. Twelve adult New Zealand White rabbits were randomly divided into two groups: group A (n = 6), the nonpore bioabsorbable suture anchor group, and group pA (n = 6), the micropore bioabsorbable suture anchor group. Microcomputed tomography was used at 4 and 8 weeks postoperatively to evaluate ingrowth by bone volume fraction (BVF), which was measured by calculating the ratio of the total volume of bone ingrowth to that of the region of interest. For pullout strength testing, 3 additional rabbits (6 limbs) were used for mechanical testing. RESULTS: The mean BVF was higher in group pA (0.288 ± 0.054) than in group A (0.097 ± 0.006). The micropore anchor had a higher pullout strength (0.520 ± 0.294 N) than the nonpore anchor (0.275 ± 0.064 N). CONCLUSION: Micropore bioabsorbable suture anchors induced bone ingrowth and showed higher pullout strength, despite processing.


Assuntos
Cabeça do Úmero/cirurgia , Osseointegração , Manguito Rotador/cirurgia , Âncoras de Sutura , Implantes Absorvíveis , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Cabeça do Úmero/diagnóstico por imagem , Cabeça do Úmero/fisiopatologia , Masculino , Coelhos , Lesões do Manguito Rotador , Resistência à Tração , Microtomografia por Raio-X
10.
J Mater Sci Mater Med ; 23(11): 2671-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22990617

RESUMO

Three dimensional tissue engineered scaffolds for the treatment of critical defect have been usually fabricated by salt leaching or gas forming technique. However, it is not easy for cells to penetrate the scaffolds due to the poor interconnectivity of pores. To overcome these current limitations we utilized a rapid prototyping (RP) technique for fabricating tissue engineered scaffolds to treat critical defects. The RP technique resulted in the uniform distribution and systematic connection of pores, which enabled cells to penetrate the scaffold. Two kinds of materials were used. They were poly(ε-caprolactone) (PCL) and poly(D, L-lactic-glycolic acid) (PLGA), where PCL is known to have longer degradation time than PLGA. In vitro tests supported the biocompatibility of the scaffolds. A 12-week animal study involving various examinations of rabbit tibias such as micro-CT and staining showed that both PCL and PLGA resulted in successful bone regeneration. As expected, PLGA degraded faster than PCL, and consequently the tissues generated in the PLGA group were less dense than those in the PCL group. We concluded that slower degradation is preferable in bone tissue engineering, especially when treating critical defects, as mechanical support is needed until full regeneration has occurred.


Assuntos
Osso e Ossos/química , Ácido Láctico/química , Poliésteres/química , Ácido Poliglicólico/química , Engenharia Tecidual , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Microscopia Eletrônica de Varredura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Coelhos , Tomografia Computadorizada por Raios X
11.
J Mater Sci Mater Med ; 23(11): 2773-81, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22802107

RESUMO

Without using biochemical agents, in this study, we sought to investigate the potential of controlling the differentiation of mesenchymal stem cells (MSCs) into a specific cell type through the use of 3D co-culturing and mechanical stimuli. MSCs and primary cultured chondrocytes were separately encapsulated into alginate beads, and the two types of beads were separated by a membrane. For the investigation a computer-controllable bioreactor was designed and used to engage intermittent hydrostatic pressure (IHP). Five different magnitudes (0.20, 0.10, 0.05, 0.02 MPa and no stimulation) of IHP were applied. The stimulation pattern was the same for all groups: 2 h/day for 7 days starting at 24 h after seeding; 2 and 15 min cycles of stimulating and resting, respectively. Biochemical (DNA and GAG contents), histological (Alcian blue), and RT-PCR (Col II, SOX9, AGC) analyses were performed on days 1, 5, 10, and 20. The results from these analyses showed that stimulation with higher magnitudes of IHP (≥0.10 MPa) were more effective on the proliferation and differentiation of co-cultured MSCs. Together, these data demonstrate the potential of using mechanical stimulation and co-culturing for the proliferation and differentiation of MSCs, even without biochemical agents.


Assuntos
Condrogênese , Pressão Hidrostática , Células-Tronco Mesenquimais/citologia , Animais , Sequência de Bases , Diferenciação Celular , Técnicas de Cocultura , DNA/análise , Primers do DNA , Expressão Gênica , Glicosaminoglicanos/análise , Masculino , Células-Tronco Mesenquimais/metabolismo , Reação em Cadeia da Polimerase , Coelhos
12.
Pharmaceutics ; 13(4)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801692

RESUMO

Mesenchymal stem cells (MSCs) have been extensively used in the tissue regeneration therapy. Ex vivo therapy with well-differentiated osteogenic cells is known as an efficient treatment for musculoskeletal diseases, including rheumatoid diseases. However, along with its high cost, the current therapy has limitations in terms of restoring bone regeneration procedures. An efficient process for the cell differentiation to obtain a large number of functionalized osteogenic cells is necessary. Therefore, it is strongly recommended to develop strategies to produce sufficient numbers of well-differentiated osteogenic cells from the MSCs. In general, differentiation media with growth factors have been used to facilitate cell differentiation. In the present study, the poly (lactic-co-glycolic acid) (PLGA) nanoparticles incorporating the growth factors were included in the media, resulting in releasing growth factors (dexamethasone and ß-glycerophosphate) in the media in the controlled manner. Stable growth and early differentiation of osteogenic cells were achieved by the PLGA-based growth factor releasing system. Moreover, low intensity pulsed ultrasound was applied to this system to induce cell differentiation process. The results revealed that, as a biomarker at early stage of osteogenic cell differentiation, Lamin A/C nuclear protein was efficiently expressed in the cells growing in the presence of PLGA-based growth factor reservoirs and ultrasound. In conclusion, our results showed that the ultrasound stimulation combined with polymeric nanoparticles releasing growth factors could potentially induce osteogenic cell differentiation.

13.
Artif Cells Nanomed Biotechnol ; 47(1): 586-593, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30831031

RESUMO

We describe the ex vivo expansion of haematopoietic stem/progenitor cells (HSPCs) with consideration of their eventual in-vivo niche. We firstly fabricated hierarchically structured scaffolds (lattices derived via three-dimensional plotting combined with electrospun submicron fibers coated with vitronectin to increase cell affinity). We also applied intermittent hydrostatic pressure (IHP) to mimic the physical environment of the in vivo niche. In the absence of mechanical stimuli, the cell phenotype (CD34+, CD34+CD38-) remained excellent in the vitronectin-treated group. Two IHP regimens were tested; optimally, cells were pressurized (20 kPa) for 2 min and then rested for 13 min. On day 7 of culture, the total cell number had increased 21.2-fold and that of CD34+ cells 10.94-fold. CD34+ and CD34+CD38- cells constituted 44.50 and 44.07% of total cells, respectively. Colony-forming counts and the long-term culture-initiating cell assay showed that clonogenic potential was greatly improved under our experimental conditions. Scaffolds with hierarchical structures were valuable in this context. Furthermore, ex vivo expansion of HSPCs was improved by physical stimulation.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Hematopoéticas/citologia , Fenômenos Mecânicos , Contagem de Células , Proliferação de Células , Humanos , Fenótipo
14.
J Tissue Eng Regen Med ; 13(8): 1394-1405, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31066514

RESUMO

The tissue-engineered oesophagus serves as an alternative and promising therapeutic approach for long-gap oesophageal replacement. This study proposes an advanced in vitro culture platform focused on construction of the oesophagus by combining an electrospun double-layered tubular scaffold, stem cells, biochemical reagents, and biomechanical factors. Human mesenchymal stem cells were seeded onto the inner and outer surfaces of the scaffold. Mechanical stimuli were applied with a hollow organ bioreactor along with different biochemical reagents inside and outside of the scaffold. Electrospun fibres in a tubular scaffold were found to be randomly and circumferentially oriented for the inner and outer surfaces, respectively. Amongst the two types of mechanical stimuli, the intermittent shear flow that can simultaneously cause circumferential stretching due to hydrostatic pressure, and shear stress caused by flow on the inner surface, was found to be more effective for simultaneous differentiation into epithelial and muscle lineage than steady shear flow. Under these conditions, the expression of epithelial markers on the inner surface was significantly observed, although it was minimal on the outer surface. Muscle differentiation showed the opposite expression pattern. Meanwhile, the mechanical tests showed that the strength of the scaffold was improved after incubation for 14 days. We have developed a potential platform for tissue-engineered oesophagus construction. Specifically, simultaneous differentiation into epithelial and muscle lineages can be achieved by utilizing the double-layered scaffold and appropriate mechanical stimulation.


Assuntos
Diferenciação Celular , Linhagem da Célula , Esôfago/citologia , Estresse Mecânico , Alicerces Teciduais/química , Reatores Biológicos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Miócitos de Músculo Liso/metabolismo
15.
J Biomed Mater Res A ; 107(3): 552-560, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30390394

RESUMO

Even the efficacy of substrate and mechanical stimuli in addition to biochemical cues have been recognized in many studies of stem cell differentiation, few studies have been reported on the differentiation into esophageal epithelial cells. Therefore, the aim of this study was set to propose a method of differentiating stem cells into esophageal epithelial cells according to biochemical reagent concentration, substrate properties, and mechanical forces. After the concentration of all-trans retinoic acid was determined as 5 µM by a baseline experiment, the degree of differentiation was compared in three different kinds of substrates: cover glass, polyurethane (PU) membrane, and electrospun PU sheet (ePU). Then, on the substrate showing the more positive results, that is, ePU, two types of mechanical forces, intermittent hydrostatic pressure (IHP), and shear stress (SS), were applied individually at different magnitudes for the latter 7 days of an overall incubation period of 14 days. Following various biological assays, the lower IHP (50 mmHg) resulted in greater positive effects than the others. Even with cessation of the mechanical force, the relevant markers were remarkably increased. Although the range of factors regulating differentiation was limited, this study nonetheless demonstrated the combinational effects of mechanical force along with substrate type for the first time in related studies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 552-560, 2019.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular , Materiais Revestidos Biocompatíveis/química , Células Epiteliais/metabolismo , Esôfago/metabolismo , Células-Tronco Mesenquimais/metabolismo , Estresse Mecânico , Células da Medula Óssea/citologia , Células Epiteliais/citologia , Esôfago/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Poliuretanos/química , Propriedades de Superfície , Tretinoína/farmacologia
16.
Int J Nanomedicine ; 13: 1107-1117, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29520139

RESUMO

BACKGROUND: Successful bone tissue engineering using scaffolds is primarily dependent on the properties of the scaffold, including biocompatibility, highly interconnected porosity, and mechanical integrity. METHODS: In this study, we propose new composite scaffolds consisting of mesoporous magnesium silicate (m_MS), polycaprolactone (PCL), and wheat protein (WP) manufactured by a rapid prototyping technique to provide a micro/macro porous structure. Experimental groups were set based on the component ratio: (1) WP0% (m_MS:PCL:WP =30:70:0 weight per weight; w/w); (2) WP15% (m_MS:PCL:WP =30:55:15 w/w); (3) WP30% (m_MS:PCL:WP =30:40:30 w/w). RESULTS: Evaluation of the properties of fabricated scaffolds indicated that increasing the amount of WP improved the surface hydrophilicity and biodegradability of m_MS/PCL/WP composites, while reducing the mechanical strength. Moreover, experiments were performed to confirm the biocompatibility and osteogenic differentiation of human mesenchymal stem cells (MSCs) according to the component ratio of the scaffold. The results confirmed that the content of WP affects proliferation and osteogenic differentiation of MSCs. Based on the last day of the experiment, ie, the 14th day, the proliferation based on the amount of DNA was the best in the WP30% group, but all of the markers measured by PCR were the most expressed in the WP15% group. CONCLUSION: These results suggest that the m_MS/PCL/WP composite is a promising candidate for use as a scaffold in cell-based bone regeneration.


Assuntos
Materiais Biocompatíveis/farmacologia , Silicatos de Magnésio/farmacologia , Osteogênese , Proteínas de Plantas/farmacologia , Poliésteres/farmacologia , Alicerces Teciduais/química , Triticum/química , Absorção Fisico-Química , Fosfatase Alcalina/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Força Compressiva , DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Silicatos de Magnésio/química , Camundongos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Porosidade
17.
Stem Cells Int ; 2018: 4527929, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681947

RESUMO

Ex vivo expansion of hematopoietic stem/progenitor cell (HSPC) has been investigated to improve the clinical outcome of HSPC transplantation. However, ex vivo expansion of HSPCs still faces a major obstacle in that HPSCs tend to differentiate when proliferating. Here, we cocultured HSPCs with mesenchymal stem cells (MSCs) and divided the HSPCs into two fractions according to whether they came into adherent to MSCs or not. Additionally, we used hydrostatic pressure (HP) to mimic the physical conditions in vivo. Even nonadherent cells expanded to yield a significantly larger number of total nucleated cells (TNCs), adherent cells maintained the HSPC phenotype (CD34+, CD34+CD38-, and CD133+CD38-) to a greater extent than nonadherent cells and had superior clonogenic potential. Moreover, applying HP significantly increased the number of TNCs, the frequency of the immature HSPC phenotype, and the clonogenic potential. Furthermore, the genetic markers for the HSPC niche were significantly increased under HP. Our data suggest that the nonadherent fraction is the predominant site of HSPC expansion, whereas the adherent fraction seems to mimic the HSPC niche for immature cells. Moreover, HP has a synergistic effect on expansion and functional maintenance. This first study utilizing HP has a potential of designing clinically applicable expansion systems.

18.
RSC Adv ; 8(59): 33882-33892, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-35548789

RESUMO

The properties of scaffolds for bone tissue engineering, including their biocompatibility, highly interconnected porosity, and mechanical integrity, are critical for promoting cell adhesion, proliferation, and osteoinduction. We used various physical and biological assays to obtain in vitro confirmation that the proposed composite scaffolds are potentially suitable for applications to bone tissue engineering. The proposed new composite scaffolds, which we fabricated by a rapid prototyping technique, were composed of mesoporous magnesium-calcium silicate (m_MCS), polycaprolactone (PCL), and polybutylene succinate (PBSu). We systematically evaluated the characteristics of the composite scaffolds, such as the hydrophilicity and bioactivity. We also investigated the proliferation and osteogenic differentiation of human mesenchymal stem cells (MSCs) scaffolded on the m_MCS/PCL/PBSu composite. Our results showed that, compared to the m_MCS/PCL scaffold, the m_MCS/PCL/PBSu scaffold has improved water absorption, in vitro degradability, biocompatibility, and bioactivity in simulated body fluid, while its mechanical strength is reduced. Moreover, the results of the cytotoxicity tests specified in ISO 10993-12 and ISO 10993-5 clearly indicate that the m_MCS/PCL scaffold is not toxic to cells. In addition, we obtained significant increases in initial cell attachment and improvements to the osteogenic MSC differentiation by replacing the m_MCS/PCL scaffold with the m_MCS/PCL/PBSu scaffold. Our results indicate that the m_MCS/PCL/PBSu scaffold achieves enhanced bioactivity, degradability, cytocompatibility, and osteogenesis. As such, this scaffold is a potentially promising candidate for use in stem cell-based bone tissue engineering.

19.
J Biosci Bioeng ; 123(2): 252-258, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27546303

RESUMO

It has been widely recognized and proved that biophysical factors for mimicking in vivo conditions should be also considered to have stem cells differentiated into desired cell type in vitro along with biochemical factors. Biophysical factors include substrate and biomechanical conditions. This study focused on the effect of biomimetic mechanical stretching along with changes in substrate topography to influence on cardiomyogenic differentiation of human mesenchymal stem cells (hMSCs). Elastic micropatterned substrates were made to mimic the geometric conditions surrounding cells in vivo. To mimic biomechanical conditions due to beating of the heart, mechanical stretching was applied parallel to the direction of the pattern (10% elongation, 0.5 Hz, 4 h/day). Suberoylanilide hydroxamic acid (SAHA) was used as a biochemical factor. The micropatterned substrate was found more effective in the alignment of cytoskeleton and cardiomyogenic differentiation compared with flat substrate. Significantly higher expression levels of related markers [GATA binding protein 4 (GATA4), troponin I, troponin T, natriuretic peptide A (NPPA)] were observed when mechanical stretching was engaged on micropatterned substrate. In addition, 4 days of mechanical stretching was associated with higher levels of expression than 2 days of stretching. These results indicate that simultaneous engagement of biomimetic environment such as substrate pattern and mechanical stimuli effectively promotes the cardiomyogenic differentiation of hMSCs in vitro. The suggested method which tried to mimic in vivo microenvironment would provide systematic investigation to control cardiomyogenic differentiation of hMSCs.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/fisiologia , Miócitos Cardíacos/fisiologia , Estresse Mecânico , Alicerces Teciduais/química , Biomarcadores/metabolismo , Fenômenos Biomecânicos , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Citoesqueleto/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Miócitos Cardíacos/citologia , Propriedades de Superfície , Resistência à Tração , Técnicas de Cultura de Tecidos/instrumentação , Técnicas de Cultura de Tecidos/métodos
20.
Int J Nanomedicine ; 12: 7007-7013, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29026297

RESUMO

PURPOSE: This study aimed to develop an anti-inflammation system consisting of epigallo-catechin-3-gallate (EGCG) encapsulated in poly(lactide-co-glycolic acid) (PLGA) particles to promote wound healing. METHODS: Nano- and microscale PLGA particles were fabricated using a water/oil/water emulsion solvent evaporation method. The optimal particle size was determined based on drug delivery efficiency and biocompatibility. The particles were loaded with EGCG. The anti-inflammatory effects of the particles were evaluated in an in vitro cell-based inflammation model. RESULTS: Nano- and microscale PLGA particles were produced. The microscale particles showed better biocompatibility than the nanoscale particles. In addition, the microscale particles released ~60% of the loaded drug, while the nanoscale particles released ~50%, within 48 hours. Thus, microscale particles were selected as the carriers. The optimal EGCG working concentration was determined based on the effects on cell viability and inflammation. A high EGCG dose (100 µM) resulted in poor cell viability; therefore, a lower dose (≤50 µM) was used. Moreover, 50 µM EGCG had a greater anti-inflammatory effect than 10 µM concentration on lipopolysaccharide-induced inflammation. Therefore, 50 µM EGCG was selected as the working dose. EGCG-loaded microparticles inhibited inflammation in human dermal fibroblasts. Interestingly, the inhibitory effects persisted after replacement of the drug-loaded particle suspension solution with fresh medium. CONCLUSION: The EGCG-loaded microscale particles are biocompatible and exert a sustained anti-inflammatory effect.


Assuntos
Anti-Inflamatórios/farmacologia , Catequina/análogos & derivados , Nanopartículas/química , Tamanho da Partícula , Catequina/farmacologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Liberação Controlada de Fármacos , Difusão Dinâmica da Luz , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Nanopartículas/ultraestrutura , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa