Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 24(3): 783-92, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23239263

RESUMO

Physical characteristics of the growth substrate including nano- and microstructure play crucial role in determining the behaviour of the cells in a given biological context. To test the effect of varying the supporting surface structure on cell growth we applied a novel sol-gel phase separation-based method to prepare micro- and nanopatterned surfaces with round surface structure features. Variation in the size of structural elements was achieved by solvent variation and adjustment of sol concentration. Growth characteristics and morphology of primary human dermal fibroblasts were found to be significantly modulated by the microstructure of the substrate. The increase in the size of the structural elements, lead to increased inhibition of cell growth, altered morphology (increased cytoplasmic volume), enlarged cell shape, decrease in the number of filopodia) and enhancement of cell senescence. These effects are likely mediated by the decreased contact between the cell membrane and the growth substrate. However, in the case of large surface structural elements other factors like changes in the 3D topology of the cell's cytoplasm might also play a role.


Assuntos
Fibroblastos/citologia , Géis , Células Cultivadas , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Propriedades de Superfície
2.
J Colloid Interface Sci ; 626: 265-275, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35792458

RESUMO

In the current study we demonstrate a method of preparation of low-density polydimethylsiloxane (PDMS) foams from emulsions by using water-based thixotropic fluids as porogens. Aqueous dispersions of synthetic hectorite clay and nanocellulose were used as thixotropic fluids, enabling the preparation of fine emulsions in bulk form with the droplet size down to few tens of microns by simple hand mixing. Contrary to conventional emulsion templating where stabilization of emulsion is required, a strategy was developed for obtaining foams by using controlled destabilization of an emulsion, induced during the curing of the PDMS matrix phase by adding a carefully selected surfactant in optimized concentration. This strategy enables the preparation of bulk PDMS foams with interconnected porosity in a range of density values, fast and deformation-free drying and uniform porous structure with a range of mechanical properties. Clay microplatelet with clearly defined shape and with mass in the nanogram range is retained in spherical pores as the porogen is removed by evaporation. Foams with density down to 0.353 g/cm3 and thermal conductivity of 0.0745 W/m * K were prepared. Elastic modulus of the prepared foams ranged from 0.156 to 0.379 MPa, a reduction of 94.3-86.3% as compared to pure nonporous PDMS.


Assuntos
Dimetilpolisiloxanos , Argila , Dimetilpolisiloxanos/química , Módulo de Elasticidade , Emulsões/química , Porosidade
3.
Heliyon ; 7(7): e07675, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34381910

RESUMO

In the current study we show that the combustion of sol-gel derived alcogels with specifically tailored composition leads to the release of silica nanoparticles from the burning alcogel in a controlled manner which enables direct deposition of the released nanoparticles into low-density silica thick films. The process has some similarities to flame spray pyrolysis but requires no aerosol generator or other sophisticated instrumental setup. By the proper choice of catalysts and mixture of silicon alkoxides for the synthesis of the alcogel, preferential hydrolysis and polycondensation of one of the alkoxides is achieved. This leads to the formation of an alcogel with volatile silica precursor trapped in the gel pores. Resulting alcogels were burned to deposit uniform porous silica films with density of ~0.1 g/cm3 and primary particle size of ~10 nm. Demonstrated method yields silanol-free silica directly, without additional treatment steps and enables straightforward control over the deposition rate and coarseness of the layer by simple adjustment of the composition of the silica alcogel. The maximum layer thickness is limited only by the deposition time (in the current work up to 134 µm). Such technique of porous oxide film preparation could potentially be extended to the preparation of porous films from other oxides by using respective metal alkoxides as precursors.

4.
Materials (Basel) ; 14(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383718

RESUMO

In this study, GNF@ZnO composites (gelatin nanofibers (GNF) with zinc oxide (ZnO) nanoparticles (NPs)) as a novel antibacterial agent were obtained using a wet chemistry approach. The physicochemical characterization of ZnO nanoparticles (NPs) and GNF@ZnO composites, as well as the evaluation of their antibacterial activity toward Gram-positive (Staphyloccocus aureus and Bacillus pumilus) and Gram-negative (Escherichia coli and Pseudomonas fluorescens) bacteria were performed. ZnO NPs were synthesized using a facile sol-gel approach. Gelatin nanofibers (GNF) were obtained by an electrospinning technique. GNF@ZnO composites were obtained by adding previously produced GNF into a Zn2+ methanol solution during ZnO NPs synthesis. Crystal structure, phase, and elemental compositions, morphology, as well as photoluminescent properties of pristine ZnO NPs, pristine GNF, and GNF@ZnO composites were characterized using powder X-ray diffraction (XRD), FTIR analysis, transmission and scanning electron microscopies (TEM/SEM), and photoluminescence spectroscopy. SEM, EDX, as well as FTIR analyses, confirmed the adsorption of ZnO NPs on the GNF surface. The pristine ZnO NPs were highly crystalline and monodispersed with a size of approximately 7 nm and had a high surface area (83 m2/g). The thickness of the pristine gelatin nanofiber was around 1 µm. The antibacterial properties of GNF@ZnO composites were investigated by a disk diffusion assay on agar plates. Results show that both pristine ZnO NPs and their GNF-based composites have the strongest antibacterial properties against Pseudomonas fluorescence and Staphylococcus aureus, with the zone of inhibition above 10 mm. Right behind them is Escherichia coli with slightly less inhibition of bacterial growth. These properties of GNF@ZnO composites suggest their suitability for a range of antimicrobial uses, such as in the food industry or in biomedical applications.

5.
Sci Rep ; 6: 27398, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27264108

RESUMO

While the cellular mechanisms of liver regeneration have been thoroughly studied, the role of extracellular matrix (ECM) in liver regeneration is still poorly understood. We utilized a proteomics-based approach to identify the shifts in ECM composition after CCl4 or DDC treatment and studied their effect on the proliferation of liver cells by combining biophysical and cell culture methods. We identified notable alterations in the ECM structural components (eg collagens I, IV, V, fibronectin, elastin) as well as in non-structural proteins (eg olfactomedin-4, thrombospondin-4, armadillo repeat-containing x-linked protein 2 (Armcx2)). Comparable alterations in ECM composition were seen in damaged human livers. The increase in collagen content and decrease in elastic fibers resulted in rearrangement and increased stiffness of damaged liver ECM. Interestingly, the alterations in ECM components were nonhomogenous and differed between periportal and pericentral areas and thus our experiments demonstrated the differential ability of selected ECM components to regulate the proliferation of hepatocytes and biliary cells. We define for the first time the alterations in the ECM composition of livers recovering from damage and present functional evidence for a coordinated ECM remodelling that ensures an efficient restoration of liver tissue.


Assuntos
Matriz Extracelular/metabolismo , Regeneração Hepática , Fígado/patologia , Animais , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Fígado/metabolismo , Fígado/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos CBA , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência
6.
Mater Sci Eng C Mater Biol Appl ; 42: 538-45, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25063151

RESUMO

Thermally cross-linked glucose-containing electrospun gelatin meshes were studied as possible cell substrate materials. FTIR analysis was used to study the effect of glucose on cross-linking reactions. It was found that the presence of glucose increases the extent of cross-linking of fibrous gelatin scaffolds, which in return determines scaffold properties and their usability in tissue engineering applications. Easy to handle fabric-like scaffolds were obtained from blends containing up to 15% glucose. Maximum extent of cross-linking was reached at nearly 20% glucose content. Cross-linking effectively resulted in decreased solubility and increased resistance to enzymatic degradation. Preliminary short-term cell culture experiments indicate that such thermally cross-linked gelatin-glucose scaffolds are suitable for tissue engineering applications.


Assuntos
Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Gelatina/química , Glucose/química , Glucose/farmacologia , Alicerces Teciduais/química , Materiais Biocompatíveis/farmacologia , Forma Celular/efeitos dos fármacos , Células Cultivadas , Reagentes de Ligações Cruzadas , Técnicas Eletroquímicas , Fibroblastos/efeitos dos fármacos , Humanos , Teste de Materiais , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa