Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biogerontology ; 21(6): 695-708, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533368

RESUMO

Senescent fibroblasts are characterized by their inability to proliferate and by a pro-inflammatory and catabolic secretory phenotype, which contributes to age-related pathologies. Furthermore, senescent fibroblasts when cultured under classical conditions in vitro are also characterized by striking morphological changes, i.e. they lose the youthful spindle-like appearance and become enlarged and flattened, while their nuclei from elliptical become oversized and highly lobulated. Knowing the strong relation between cell shape and function, we cultured human senescent fibroblasts on photolithographed Si/poly(vinyl alcohol) (PVA) micro-patterned surfaces in order to restore the classical spindle-like geometry and subsequently to investigate whether the changes in senescent cells' morphology are the cause of their functional alterations. Interestingly, under these conditions senescent cells' nuclei do not revert to the classical elliptical phenotype. Furthermore, enforced spindle-shaped senescent cells retained their deteriorated proliferative ability, and maintained the increased gene expression of the cell cycle inhibitors p16Ink4a and p21Waf1. In addition, Si/PVA-patterned-grown senescent fibroblasts preserved their senescence-associated phenotype, as evidenced by the overexpression of inflammatory and catabolic genes such as IL6, IL8, ICAM1 and MMP1 and MMP9 respectively, which was further manifested by an intense downregulation of fibroblasts' most abundant extracellular matrix component Col1A, compared to their young counterparts. These data indicate that the restoration of the spindle-like shape in senescent human fibroblasts is not able to directly alter major functional traits and restore the youthful phenotype.


Assuntos
Forma Celular , Senescência Celular , Fibroblastos , Células Cultivadas , Colágeno Tipo I , Cadeia alfa 1 do Colágeno Tipo I , Inibidor p16 de Quinase Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p21 , Matriz Extracelular , Fibroblastos/citologia , Humanos , Pele
2.
Biosensors (Basel) ; 14(5)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38785702

RESUMO

Legionella pneumophila has been pinpointed by the World Health Organization as the highest health burden of all waterborne pathogens in the European Union and is responsible for many disease outbreaks around the globe. Today, standard analysis methods (based on bacteria culturing onto agar plates) need several days (~12) in specialized analytical laboratories to yield results, not allowing for timely actions to prevent outbreaks. Over the last decades, great efforts have been made to develop more efficient waterborne pathogen diagnostics and faster analysis methods, requiring further advancement of microfluidics and sensors for simple, rapid, accurate, inexpensive, real-time, and on-site methods. Herein, a lab-on-a-chip device integrating sample preparation by accommodating bacteria capture, lysis, and DNA isothermal amplification with fast (less than 3 h) and highly sensitive, colorimetric end-point detection of L. pneumophila in water samples is presented, for use at the point of need. The method is based on the selective capture of viable bacteria on on-chip-immobilized and -lyophilized antibodies, lysis, the loop-mediated amplification (LAMP) of DNA, and end-point detection by a color change, observable by the naked eye and semiquantified by computational image analysis. Competitive advantages are demonstrated, such as low reagent consumption, portability and disposability, color change, storage at RT, and compliance with current legislation.


Assuntos
Colorimetria , Dispositivos Lab-On-A-Chip , Legionella pneumophila , Técnicas de Amplificação de Ácido Nucleico , Legionella pneumophila/isolamento & purificação , Humanos , Microbiologia da Água , DNA Bacteriano/análise , Técnicas Biossensoriais , Técnicas de Diagnóstico Molecular
3.
Macromol Biosci ; 23(1): e2200301, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189866

RESUMO

Surfaces for guided cell adhesion and growth are indispensable in several diagnostic and therapeutic applications. Towards this direction, four diblock copolymers comprising polyethylene glycol (PEG) and poly(2-tetrahydropyranyl methacrylate) (PTHPMA) are synthesized employing PEG macroinitiators of different chain lengths. The copolymer with a 5000 Da PEG block and a PEG-PTHPMA comonomers weight ratio of 43-57 provides a film with the highest stability in the culture medium and the strongest cell repellent properties. This copolymer is used to develop a positive photolithographic material and create stripe patterns onto silicon substrates. The highest selectivity regarding smooth muscle cell adhesion and growth and the highest fidelity of adhered cells for up to 3 days in culture is achieved for stripe patterns with widths between 25 and 27.5 µm. Smooth muscle cells cultured on such patterned substrates exhibit a decrease in their proliferation rate and nucleus area and an increase in their major axis length, compared to the cells cultured onto non-patterned substrates. These alterations are indicative of the adoption of a contractile rather than a synthetic phenotype of the smooth muscle cells grown onto the patterned substrates and demonstrate the potential of the novel photolithographic material and patterning method for guided cell adhesion and growth.


Assuntos
Polietilenoglicóis , Polímeros , Polietilenoglicóis/química , Adesão Celular/fisiologia , Polímeros/farmacologia , Polímeros/química
4.
Materials (Basel) ; 16(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37241360

RESUMO

Early diagnosis and monitoring are essential for the effective treatment and survival of patients with different types of malignancy. To this end, the accurate and sensitive determination of substances in human biological fluids related to cancer diagnosis and/or prognosis, i.e., cancer biomarkers, is of ultimate importance. Advancements in the field of immunodetection and nanomaterials have enabled the application of new transduction approaches for the sensitive detection of single or multiple cancer biomarkers in biological fluids. Immunosensors based on surface-enhanced Raman spectroscopy (SERS) are examples where the special properties of nanostructured materials and immunoreagents are combined to develop analytical tools that hold promise for point-of-care applications. In this frame, the subject of this review article is to present the advancements made so far regarding the immunochemical determination of cancer biomarkers by SERS. Thus, after a short introduction about the principles of both immunoassays and SERS, an extended presentation of up-to-date works regarding both single and multi-analyte determination of cancer biomarkers is presented. Finally, future perspectives on the field of SERS immunosensors for cancer markers detection are briefly discussed.

5.
Biosensors (Basel) ; 13(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36832039

RESUMO

Glutathione and malondialdehyde are two compounds commonly used to evaluate the oxidative stress status of an organism. Although their determination is usually performed in blood serum, saliva is gaining ground as the biological fluid of choice for oxidative stress determination at the point of need. For this purpose, surface-enhanced Raman spectroscopy (SERS), which is a highly sensitive method for the detection of biomolecules, could offer additional advantages regarding the analysis of biological fluids at the point of need. In this work, silicon nanowires decorated with silver nanoparticles made by metal-assisted chemical etching were evaluated as substrates for the SERS determination of glutathione and malondialdehyde in water and saliva. In particular, glutathione was determined by monitoring the reduction in the Raman signal obtained from substrates modified with crystal violet upon incubation with aqueous glutathione solutions. On the other hand, malondialdehyde was detected after a reaction with thiobarbituric acid to produce a derivative with a strong Raman signal. The detection limits achieved after optimization of several assay parameters were 50 and 3.2 nM for aqueous solutions of glutathione and malondialdehyde, respectively. In artificial saliva, however, the detection limits were 2.0 and 0.32 µM for glutathione and malondialdehyde, respectively, which are, nonetheless, adequate for the determination of these two markers in saliva.


Assuntos
Nanopartículas Metálicas , Nanofios , Silício/química , Nanopartículas Metálicas/química , Prata/química , Saliva/química , Nanofios/química , Análise Espectral Raman/métodos , Água/química , Glutationa/análise
6.
Nanomaterials (Basel) ; 13(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132997

RESUMO

Nanostructured noble metal surfaces enhance the photoluminescence emitted by fluorescent molecules, permitting the development of highly sensitive fluorescence immunoassays. To this end, surfaces with silicon nanowires decorated with silver nanoparticles in the form of dendrites or aggregates were evaluated as substrates for the immunochemical detection of two ovarian cancer indicators, carbohydrate antigen 125 (CA125) and human epididymis protein 4 (HE4). The substrates were prepared by metal-enhanced chemical etching of silicon wafers to create, in one step, silicon nanowires and silver nanoparticles on top of them. For both analytes, non-competitive immunoassays were developed using pairs of highly specific monoclonal antibodies, one for analyte capture on the substrate and the other for detection. In order to facilitate the identification of the immunocomplexes through a reaction with streptavidin labeled with Rhodamine Red-X, the detection antibodies were biotinylated. An in-house-developed optical set-up was used for photoluminescence signal measurements after assay completion. The detection limits achieved were 2.5 U/mL and 3.12 pM for CA125 and HE4, respectively, with linear dynamic ranges extending up to 500 U/mL for CA125 and up to 500 pM for HE4, covering the concentration ranges of both healthy and ovarian cancer patients. Thus, the proposed method could be implemented for the early diagnosis and/or prognosis and monitoring of ovarian cancer.

7.
Colloids Surf B Biointerfaces ; 187: 110675, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31810566

RESUMO

The enrichment of cancer cell population when in mixtures with normal ones is of great importance for cancer diagnosis. In this work, poly(methyl methacrylate) films have been processed applying different oxygen plasma conditions to fabricate surfaces with structure height ranging from 22 to more than 2000 nm. The surfaces were then evaluated with respect to adhesion and proliferation of both normal and cancer human cells. In particular, normal skin and lung fibroblasts, and four different cancer cell lines, A431 (skin cancer), HT1080 (fibrosarcoma), A549 (lung cancer), and PC3 (prostate cancer), have been employed. It was found that adhesion and proliferation of cancer cells was favored when cultured onto the hierarchical micro/nanostructured surfaces as compared to untreated ones with the maximum values obtained for substrates treated at -100 V for 3 min. On the other hand, although the adhesion of normal fibroblasts was not influenced by the micro/nanostructured surfaces, their morphology and proliferation was significantly impaired, especially after 3-day culture on these surfaces. The reduced proliferation rate of adherent fibroblasts was linked to reduced focal points formation, as it was verified through vinculin staining, and not to apoptosis. The micro/nanostructured surfaces prepared with plasma treatment at -100 V for 3 min (hierarchical topography with mean height of ∼800 nm) were selected as substrates for normal and cancer cell co-culture experiments. It was found that 25-80 times enrichment of cancer over the normal cells was achieved on the nanostructured surfaces after 3-day culture, while it was 5-8 times lower on the untreated ones. It should be noticed that this is the first time such high enrichment ratios are achieved without implementing surfaces modified with binding molecules specific for cancer cells. Thus, the nanostructured surfaces hold a strong promise as culture substrates for separation and enrichment of cancer cells from mixtures with normal ones that should find application in cancer diagnostics.


Assuntos
Adesão Celular , Técnicas de Cultura de Células/métodos , Proliferação de Células , Fibroblastos/citologia , Nanoestruturas/química , Polímeros/química , Polimetil Metacrilato/química , Linhagem Celular Tumoral , Forma Celular , Células Cultivadas , Técnicas de Cocultura , Humanos , Microscopia Eletrônica de Varredura , Nanoestruturas/ultraestrutura , Neoplasias/diagnóstico , Oxigênio/química , Propriedades de Superfície
8.
Eur J Paediatr Neurol ; 17(3): 316-20, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23352671

RESUMO

A 28-month-old girl with dysmorphic craniofacial features, microcephaly, hypotonia, psychomotor retardation, failure to thrive and gastrointestinal problems was referred for clinical evaluation. Array-CGH analysis revealed one of the smallest de novo microdeletions on chromosome 16q21q22.1, 2.03 Mb in size. Advanced molecular analysis contributes to more precise genotype-phenotype correlation and accurate definition of the breakpoints in the deleted/duplicated regions.


Assuntos
Anormalidades Múltiplas/genética , Deleção Cromossômica , Cromossomos Humanos Par 16/genética , Deficiência Intelectual/genética , Pré-Escolar , Hibridização Genômica Comparativa , Anormalidades Craniofaciais/genética , Feminino , Estudos de Associação Genética , Cardiopatias Congênitas/genética , Humanos , Microcefalia/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa