Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Proteins ; 90(12): 2009-2022, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35752942

RESUMO

The N-terminal transactivation domain (TAD) of p53 is a disordered region with multiple phosphorylation sites. Phosphorylation at Thr18 is crucial for the release of p53 from its negative regulator, MDM2. In stressed cells, CK1δ is responsible for phosphorylating Thr18, but requires Ser15 to be phosphorylated. To understand the mechanistic underpinnings of this sequential phosphorylation, molecular modeling and molecular dynamics simulation studies of these phosphorylation events were carried out. Our models suggest that a positively charged region on CK1δ near the adenosine triphosphate (ATP) binding pocket, which is conserved across species, sequesters the negatively charged pSer15, thereby constraining the positioning of the rest of the peptide, such that the side chain of Thr18 is positioned close to the γ-phosphate of ATP. Furthermore, our studies show that the phosphorylated p53 TAD1 (p53pSer15) peptide binds more strongly to CK1δ than does p53. p53 adopts a helical structure when bound to CK1δ, which is lost upon phosphorylation at Ser15, thus gaining higher flexibility and ability to morph into the binding site. We propose that upon phosphorylation at Ser15 the p53 TAD1 peptide binds to CK1δ through an electrostatically driven induced fit mechanism resulting in a flanking fuzzy complex.


Assuntos
Simulação de Dinâmica Molecular , Proteína Supressora de Tumor p53 , Fosforilação , Proteína Supressora de Tumor p53/química , Sítios de Ligação , Trifosfato de Adenosina/metabolismo
2.
J Chem Phys ; 156(6): 065101, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35168356

RESUMO

Cyclic peptides represent a promising class of drug candidates. A significant obstacle limiting their development as therapeutics is the lack of an ability to predict their membrane permeability. We use molecular dynamics simulations to assess the ability of a set of widely used parameters in describing the membrane permeability of a set of model cyclic peptides; the parameters include polar surface area (PSA), the number of hydrogen bonds, and transfer free energy between an aqueous phase and a membrane mimicking phase. These parameters were found to generally correlate with the membrane permeability of the set of cyclic peptides. We propose two new descriptors, the charge reweighted PSA and the non-polar surface area to PSA ratio; both show enhanced correlation with membrane permeability. This inspired us to explore crosslinking of the peptide to reduce the accessible surface area of the backbone polar atoms, and we find that this can indeed result in reductions in the accessible PSA. This gives reason to speculate that crosslinking may result in increased permeability, thus suggesting a new scaffold for the development of cyclic peptides as potential therapeutics.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos Cíclicos , Permeabilidade da Membrana Celular , Ligação de Hidrogênio , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Permeabilidade
3.
J Biol Chem ; 295(52): 17935-17949, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-32900849

RESUMO

The tenovins are a frequently studied class of compounds capable of inhibiting sirtuin activity, which is thought to result in increased acetylation and protection of the tumor suppressor p53 from degradation. However, as we and other laboratories have shown previously, certain tenovins are also capable of inhibiting autophagic flux, demonstrating the ability of these compounds to engage with more than one target. In this study, we present two additional mechanisms by which tenovins are able to activate p53 and kill tumor cells in culture. These mechanisms are the inhibition of a key enzyme of the de novo pyrimidine synthesis pathway, dihydroorotate dehydrogenase (DHODH), and the blockage of uridine transport into cells. These findings hold a 3-fold significance: first, we demonstrate that tenovins, and perhaps other compounds that activate p53, may activate p53 by more than one mechanism; second, that work previously conducted with certain tenovins as SirT1 inhibitors should additionally be viewed through the lens of DHODH inhibition as this is a major contributor to the mechanism of action of the most widely used tenovins; and finally, that small changes in the structure of a small molecule can lead to a dramatic change in the target profile of the molecule even when the phenotypic readout remains static.


Assuntos
Acetanilidas/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias/tratamento farmacológico , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Polifarmacologia , Sirtuína 1/antagonistas & inibidores , Tioureia/análogos & derivados , Proteína Supressora de Tumor p53/metabolismo , Autofagia , Proliferação de Células , Di-Hidro-Orotato Desidrogenase , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Tioureia/farmacologia , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética
4.
Chembiochem ; 22(18): 2791-2798, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34240527

RESUMO

Activating industrially important aromatic hydrocarbons by installing halogen atoms is extremely important in organic synthesis and often improves the pharmacological properties of drug molecules. To this end, tryptophan halogenase enzymes are potentially valuable tools for regioselective halogenation of arenes, including various industrially important indole derivatives and similar scaffolds. Although endogenous enzymes show reasonable substrate scope towards indole compounds, their efficacy can often be improved by engineering. Using a structure-guided semi-rational mutagenesis approach, we have developed two RebH variants with expanded biocatalytic repertoires that can efficiently halogenate several novel indole substrates and produce important pharmaceutical intermediates. Interestingly, the engineered enzymes are completely inactive towards their natural substrate tryptophan in spite of their high tolerance to various functional groups in the indole ring. Computational modelling and molecular dynamics simulations provide mechanistic insights into the role of gatekeeper residues in the substrate binding site and the dramatic switch in substrate specificity when these are mutated.


Assuntos
Proteínas de Bactérias/metabolismo , Indóis/química , Oxirredutases/metabolismo , Triptofano/metabolismo , Actinobacteria/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Biocatálise , Halogenação , Indóis/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Oxirredutases/química , Oxirredutases/genética , Especificidade por Substrato , Triptofano/química
5.
Nucleic Acids Res ; 47(4): 1637-1652, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30649466

RESUMO

The DNA binding domain (DBD) of the tumor suppressor p53 is the site of several oncogenic mutations. A subset of these mutations lowers the unfolding temperature of the DBD. Unfolding leads to the exposure of a hydrophobic ß-strand and nucleates aggregation which results in pathologies through loss of function and dominant negative/gain of function effects. Inspired by the hypothesis that structural changes that are associated with events initiating unfolding in DBD are likely to present opportunities for inhibition, we investigate the dynamics of the wild type (WT) and some aggregating mutants through extensive all atom explicit solvent MD simulations. Simulations reveal differential conformational sampling between the WT and the mutants of a turn region (S6-S7) that is contiguous to a known aggregation-prone region (APR). The conformational properties of the S6-S7 turn appear to be modulated by a network of interacting residues. We speculate that changes that take place in this network as a result of the mutational stress result in the events that destabilize the DBD and initiate unfolding. These perturbations also result in the emergence of a novel pocket that appears to have druggable characteristics. FDA approved drugs are computationally screened against this pocket.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas Mutantes/química , Bibliotecas de Moléculas Pequenas/química , Proteína Supressora de Tumor p53/química , Proteínas de Ligação a DNA/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas Mutantes/genética , Mutação/genética , Conformação Proteica/efeitos dos fármacos , Domínios Proteicos/efeitos dos fármacos , Domínios Proteicos/genética , Desdobramento de Proteína/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
6.
Molecules ; 26(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573254

RESUMO

S100B(ßß) proteins are a family of multifunctional proteins that are present in several tissues and regulate a wide variety of cellular processes. Their altered expression levels have been associated with several human diseases, such as cancer, inflammatory disorders and neurodegenerative conditions, and hence are of interest as a therapeutic target and a biomarker. Small molecule inhibitors of S100B(ßß) have achieved limited success. Guided by the wealth of available experimental structures of S100B(ßß) in complex with diverse peptides from various protein interacting partners, we combine comparative structural analysis and molecular dynamics simulations to design a series of peptides and their analogues (stapled) as S100B(ßß) binders. The stapled peptides were subject to in silico mutagenesis experiments, resulting in optimized analogues that are predicted to bind to S100B(ßß) with high affinity, and were also modified with imaging agents to serve as diagnostic tools. These stapled peptides can serve as theranostics, which can be used to not only diagnose the levels of S100B(ßß) but also to disrupt the interactions of S100B(ßß) with partner proteins which drive disease progression, thus serving as novel therapeutics.


Assuntos
Inflamação/genética , Fragmentos de Peptídeos/genética , Mapas de Interação de Proteínas/genética , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Simulação por Computador , Humanos , Inflamação/terapia , Modelos Moleculares , Simulação de Dinâmica Molecular , Neoplasias/genética , Neoplasias/terapia , Fragmentos de Peptídeos/química , Medicina de Precisão , Ligação Proteica/genética , Subunidade beta da Proteína Ligante de Cálcio S100/química , Subunidade beta da Proteína Ligante de Cálcio S100/ultraestrutura
7.
Biochemistry ; 58(32): 3422-3433, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31287951

RESUMO

The PDZ domain is one of the most widespread protein interaction domains found in nature. Due to their integral role in numerous biological functions, their ability to act as scaffolds for signal amplification, and the occurrence of mutations linked to human diseases, PDZ domains are attractive therapeutic targets. On the basis of the differential binding affinities of selected C-terminal peptides of the human proteome for one such PDZ domain (PSMD9) and by exploring structure-activity relationships, we design and convert a low-affinity tetrapeptide (∼439 µM) to a tight binding sequence (∼5 µM). The peptide inhibits PSMD9-hnRNPA1 interactions that are critical in basal and stimulus-induced NF-κB signaling and a potential therapeutic target in cancers, including chemotherapy or radiation-induced therapy resistance. Extensive application of computer modeling, including ligand mapping and all-atom molecular dynamics simulations, helps us to rationalize the structural basis for the huge differences in binding affinity and inform us about the residue-wise contributions to the binding energy. Our findings are in accord with the classical preference of the (PSMD9) PDZ domain for C-terminal sequences that contain hydrophobic residues at the P0 (C-terminal) position. In addition, for the first time, we identify a hitherto unknown occupancy for cysteine at the P-2 position that drives high-affinity interaction in a PDZ domain.


Assuntos
Domínios PDZ , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Sequência de Aminoácidos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
8.
J Chem Inf Model ; 59(6): 2850-2858, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31099565

RESUMO

The emergence of resistance against drugs that inhibit a particular protein is a major problem in targeted therapy. There is a clear need for rigorous methods to predict the likelihood of specific drug-resistance mutations arising in response to the binding of a drug. In this work we attempt to develop a robust computational protocol for predicting drug resistant mutations at the gatekeeper position (T790) in EGFR. We explore how mutations at this site affects interactions with ATP and three drugs that are currently used in clinics. We found, as expected, that certain mutations are not tolerated structurally, while some other mutations interfere with the natural substrate and hence are unlikely to be selected for. However, we found five possible mutations that are well tolerated structurally and energetically. Two of these mutations were predicted to have increased affinity for the drugs over ATP, as has been reported earlier. By reproducing the trends in the experimental binding affinities of the data, the methods chosen here are able to correctly predict the effects of these mutations on the binding affinities of the drugs. However, the increased affinity does not always translate into increased efficacy, because the efficacy is affected by several other factors such as binding kinetics, competition with ATP, and residence times. The computational methods used in the current study are able to reproduce or predict the effects of mutations on the binding affinities. However, a different set of methods is required to predict the kinetics of drug binding.


Assuntos
Simulação por Computador , Receptores ErbB/genética , Mutação , Trifosfato de Adenosina/metabolismo , Apoproteínas/antagonistas & inibidores , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Resistência a Medicamentos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia , Estabilidade Proteica
9.
J Chem Inf Model ; 59(1): 309-315, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30481018

RESUMO

The anticancer drug afatinib has been found to be more effective at inhibiting the oncogenic EGFR mutant exon 19 deletion (19del) over the oncogenic EGFR mutant L858R. The underlying mechanism has been hypothesized to result from differences in structural constraints introduced by the mutations and stabilizing interactions afforded by a buried water molecule in 19del (Kannan, S.; et al. Sci. Rep. 2017, 7, 1540). The COSMIC cancer database is mined for EGFR sequences to discover that several mutations in the form of Single nucleotide polymorphisms (SNPs) line this hydration cavity. In this work, the effects of these SNPs on the affinity of afatinib for EGFRWT and oncogenic mutants EGFRL858R and EGFR19del were studied using free energy perturbation and thermodynamic Integration calculations. The simulations reveal that several SNPs have significant effects on the affinity of afatinib for the mutant EGFRs carrying the SNPs and may thus have clinical implications relating to emergence of resistance to afatinib, thus potentially impacting the choice of EGFR inhibitors in the clinic.


Assuntos
Afatinib/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Simulação de Dinâmica Molecular , Polimorfismo de Nucleotídeo Único , Afatinib/farmacologia , Mineração de Dados , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Humanos , Mutação , Ligação Proteica/genética , Conformação Proteica , Termodinâmica
10.
J Chem Inf Model ; 59(7): 3316-3329, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31140800

RESUMO

Solute-solvent interactions are critical for biomolecular stability and recognition. Explicit solvent molecular dynamics (MD) simulations are routinely used to probe such interactions. However, detailed analyses and interpretation of the hydration patterns seen in MD simulations can be both complex and time-consuming. A variety of approaches/tools to compute and interrogate hydration properties in structural ensembles of proteins, nucleic acids, or in general any molecule are available and are complemented here with a new and free software package ("JAL"). Central to "JAL" is an intuitive atom centric approach of computing hydration properties. In addition to the standard metrics commonly used to understand hydration, "JAL" introduces two nonstandard utilities: a program to rapidly compute buried waters in an MD trajectory and a new method to compute multiwater bridges around a solute. We demonstrate the utility of the package by probing the hydration characteristics of the tumor suppressor protein p53 and the translation initiation factor eif4E. "JAL" is hosted online and can be accessed for free at http://mspc.bii.a-star.edu.sg/minhn/jal.html .


Assuntos
Proteína Supressora de Tumor p53/química , Água/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Solventes
11.
Int J Mol Sci ; 20(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795143

RESUMO

Proteins that limit the activity of the tumour suppressor protein p53 are increasingly being targeted for inhibition in a variety of cancers. In addition to the development of small molecules, there has been interest in developing constrained (stapled) peptide inhibitors. A stapled peptide ALRN_6924 that activates p53 by preventing its interaction with its negative regulator Mdm2 has entered clinical trials. This stapled peptide mimics the interaction of p53 with Mdm2. The chances that this peptide could bind to other proteins that may also interact with the Mdm2-binding region of p53 are high; one such protein is the CREB binding protein (CBP)/p300. It has been established that phosphorylated p53 is released from Mdm2 and binds to p300, orchestrating the transcriptional program. We investigate whether molecules such as ALRN_6924 would bind to p300 and, to do so, we used molecular simulations to explore the binding of ATSP_7041, which is an analogue of ALRN_6924. Our study shows that ATSP_7041 preferentially binds to Mdm2 over p300; however, upon phosphorylation, it appears to have a higher affinity for p300. This could result in attenuation of the amount of free p300 available for interacting with p53, and hence reduce its transcriptional efficacy. Our study highlights the importance of assessing off-target effects of peptide inhibitors, particularly guided by the understanding of the networks of protein-protein interactions (PPIs) that are being targeted.


Assuntos
Simulação de Acoplamento Molecular , Oligopeptídeos/química , Proteínas Proto-Oncogênicas c-mdm2/química , Proteína Supressora de Tumor p53/química , Fatores de Transcrição de p300-CBP/química , Sítios de Ligação , Humanos , Oligopeptídeos/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
12.
Molecules ; 24(12)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226791

RESUMO

Stapled α-helical peptides represent an emerging superclass of macrocyclic molecules with drug-like properties, including high-affinity target binding, protease resistance, and membrane permeability. As a model system for probing the chemical space available for optimizing these properties, we focused on dual Mdm2/MdmX antagonist stapled peptides related to the p53 N-terminus. Specifically, we first generated a library of ATSP-7041 (Chang et al., 2013) analogs iteratively modified by L-Ala and D-amino acids. Single L-Ala substitutions beyond the Mdm2/(X) binding interfacial residues (i.e., Phe3, Trp7, and Cba10) had minimal effects on target binding, α-helical content, and cellular activity. Similar binding affinities and cellular activities were noted at non-interfacial positions when the template residues were substituted with their d-amino acid counterparts, despite the fact that d-amino acid residues typically 'break' right-handed α-helices. d-amino acid substitutions at the interfacial residues Phe3 and Cba10 resulted in the expected decreases in binding affinity and cellular activity. Surprisingly, substitution at the remaining interfacial position with its d-amino acid equivalent (i.e., Trp7 to d-Trp7) was fully tolerated, both in terms of its binding affinity and cellular activity. An X-ray structure of the d-Trp7-modified peptide was determined and revealed that the indole side chain was able to interact optimally with its Mdm2 binding site by a slight global re-orientation of the stapled peptide. To further investigate the comparative effects of d-amino acid substitutions we used linear analogs of ATSP-7041, where we replaced the stapling amino acids by Aib (i.e., R84 to Aib4 and S511 to Aib11) to retain the helix-inducing properties of α-methylation. The resultant analog sequence Ac-Leu-Thr-Phe-Aib-Glu-Tyr-Trp-Gln-Leu-Cba-Aib-Ser-Ala-Ala-NH2 exhibited high-affinity target binding (Mdm2 Kd = 43 nM) and significant α-helicity in circular dichroism studies. Relative to this linear ATSP-7041 analog, several d-amino acid substitutions at Mdm2(X) non-binding residues (e.g., d-Glu5, d-Gln8, and d-Leu9) demonstrated decreased binding and α-helicity. Importantly, circular dichroism (CD) spectroscopy showed that although helicity was indeed disrupted by d-amino acids in linear versions of our template sequence, stapled molecules tolerated these residues well. Further studies on stapled peptides incorporating N-methylated amino acids, l-Pro, or Gly substitutions showed that despite some positional dependence, these helix-breaking residues were also generally tolerated in terms of secondary structure, binding affinity, and cellular activity. Overall, macrocyclization by hydrocarbon stapling appears to overcome the destabilization of α-helicity by helix breaking residues and, in the specific case of d-Trp7-modification, a highly potent ATSP-7041 analog (Mdm2 Kd = 30 nM; cellular EC50 = 600 nM) was identified. Our findings provide incentive for future studies to expand the chemical diversity of macrocyclic α-helical peptides (e.g., d-amino acid modifications) to explore their biophysical properties and cellular permeability. Indeed, using the library of 50 peptides generated in this study, a good correlation between cellular permeability and lipophilicity was observed.


Assuntos
Aminoácidos/química , Peptídeos Penetradores de Células/química , Fragmentos de Peptídeos/química , Conformação Proteica , Sequência de Aminoácidos/genética , Substituição de Aminoácidos/genética , Aminoácidos/síntese química , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/genética , Peptídeos Penetradores de Células/farmacologia , Dicroísmo Circular , Dipeptídeos/química , Humanos , Oligopeptídeos/química , Peptídeos Cíclicos/farmacologia , Permeabilidade/efeitos dos fármacos , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/genética
13.
Bioorg Med Chem ; 26(10): 2807-2815, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29598901

RESUMO

Macrocyclic α-helical peptides have emerged as a compelling new therapeutic modality to tackle targets confined to the intracellular compartment. Within the scope of hydrocarbon-stapling there has been significant progress to date, including the first stapled α-helical peptide to enter into clinical trials. The principal design concept of stapled α-helical peptides is to mimic a cognate (protein) ligand relative to binding its target via an α-helical interface. However, it was the proclivity of such stapled α-helical peptides to exhibit cell permeability and proteolytic stability that underscored their promise as unique macrocyclic peptide drugs for intracellular targets. This perspective highlights key learnings as well as challenges in basic research with respect to structure-based design, innovative chemistry, cell permeability and proteolytic stability that are essential to fulfill the promise of stapled α-helical peptide drug development.


Assuntos
Descoberta de Drogas/métodos , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Animais , Humanos , Compostos Macrocíclicos/farmacocinética , Modelos Moleculares , Peptídeos/farmacocinética , Conformação Proteica em alfa-Hélice
14.
Molecules ; 23(3)2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29498707

RESUMO

A promising means in the search of new small molecules for the treatment of schistosomiasis (amongst other parasitic ailments) is by targeting the parasitic epigenome. In the present study, a docking based virtual screening procedure using the crystal structure of histone deacetylase 8 from Schistosoma mansoni (smHDAC8) was designed. From the developed screening protocol, we were able to identify eight novel N-(2,5-dioxopyrrolidin-3-yl)-n-alkylhydroxamate derivatives as smHDAC8 inhibitors with IC50 values ranging from 4.4-20.3 µM against smHDAC8. These newly identified inhibitors were further tested against human histone deacetylases (hsHDAC1, 6 and 8), and were found also to be exerting interesting activity against them. In silico prediction of the docking pose of the compounds was confirmed by the resolved crystal structure of one of the identified hits. This confirmed these compounds were able to chelate the catalytic zinc ion in a bidentate fashion, whilst showing an inverted binding mode of the hydroxamate group when compared to the reported smHDAC8/hydroxamates crystal structures. Therefore, they can be considered as new potential scaffold for the development of new smHDAC8 inhibitors by further investigation of their structure-activity relationship.


Assuntos
Anti-Helmínticos/síntese química , Quelantes/síntese química , Proteínas de Helminto/antagonistas & inibidores , Inibidores de Histona Desacetilases/síntese química , Histona Desacetilases/química , Ácidos Hidroxâmicos/síntese química , Pirrolidinas/síntese química , Schistosoma mansoni/efeitos dos fármacos , Animais , Anti-Helmínticos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Quelantes/farmacologia , Cristalografia por Raios X , Expressão Gênica , Proteínas de Helminto/química , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Pirrolidinas/farmacologia , Schistosoma mansoni/enzimologia , Schistosoma mansoni/genética , Schistosoma mansoni/crescimento & desenvolvimento , Relação Estrutura-Atividade , Zinco/química , Zinco/metabolismo
15.
Proteins ; 85(8): 1529-1549, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28486782

RESUMO

The epidermal growth factor receptor (EGFR) is a tyrosine kinase protein, overexpressed in several cancers. The extracellular domain of EGFR is known to be heavily glycosylated. Growth factor (mostly epidermal growth factor or EGF) binding activates EGFR. This occurs by inducing the transition from the autoinhibited tethered conformation to an extended conformation of the monomeric form of EGFR and by stabilizing the flexible preformed dimer. Activated EGFR adopts a back-to-back dimeric conformation after binding of another homologous receptor to its extracellular domain as the dimeric partner. Several antibodies inhibit EGFR by targeting the growth factor binding site or the dimeric interfaces. Glycosylation has been shown to be important for modulating the stability and function of EGFR. Here, atomistic MD simulations show that N-glycosylation of the EGFR extracellular domain plays critical roles in the binding of growth factors, monoclonal antibodies, and the dimeric partners to the monomeric EGFR extracellular domain. N-glycosylation results in the formation of several noncovalent interactions between the glycans and EGFR extracellular domain near the EGF binding site. This stabilizes the growth factor binding site, resulting in stronger interactions (electrostatic) between the growth factor and EGFR. N-glycosylation also helps maintain the dimeric interface and plays distinct roles in binding of antibodies to spatially separated epitopes of the EGFR extracellular domain. Analysis of SNP data suggests the possibility of altered glycosylation with functional consequences. Proteins 2017; 85:1529-1549. © 2017 Wiley Periodicals, Inc.


Assuntos
Anticorpos Monoclonais/química , Fator de Crescimento Epidérmico/química , Epitopos/química , Receptores ErbB/química , Simulação de Dinâmica Molecular , Polimorfismo de Nucleotídeo Único , Motivos de Aminoácidos , Anticorpos Monoclonais/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Fator de Crescimento Epidérmico/metabolismo , Epitopos/metabolismo , Receptores ErbB/metabolismo , Glicosilação , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Eletricidade Estática , Termodinâmica
16.
Proteins ; 84(2): 254-66, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26677132

RESUMO

Aggregation is an irreversible form of protein complexation and often toxic to cells. The process entails partial or major unfolding that is largely driven by hydration. We model the role of hydration in aggregation using "Dehydrons." "Dehydrons" are unsatisfied backbone hydrogen bonds in proteins that seek shielding from water molecules by associating with ligands or proteins. We find that the residues at aggregation interfaces have hydrated backbones, and in contrast to other forms of protein-protein interactions, are under less evolutionary pressure to be conserved. Combining evolutionary conservation of residues and extent of backbone hydration allows us to distinguish regions on proteins associated with aggregation (non-conserved dehydron-residues) from other interaction interfaces (conserved dehydron-residues). This novel feature can complement the existing strategies used to investigate protein aggregation/complexation.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Proteínas/metabolismo , Água/química , Água/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Bases de Dados de Proteínas , Ligação de Hidrogênio , Dados de Sequência Molecular , Agregados Proteicos , Conformação Proteica
17.
Biochemistry ; 54(1): 32-46, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25431995

RESUMO

Mitogen-activated protein kinases-interacting kinase 1 and 2 (Mnk1/2) activate the oncogene eukaryotic initiation factor 4E (eIF4E) by phosphorylation. High level of phosphorylated eIF4E is associated with various types of cancers. Inhibition of Mnk prevents eIF4E phosphorylation, making them potential therapeutic targets for cancer. Recently, we have designed and synthesized a series of novel imidazopyridine and imidazopyrazine derivatives that inhibit Mnk1/2 kinases with a potency in the nanomolar to micromolar range. In the current work we model the inhibition of Mnk kinase activity by these inhibitors using various computational approaches. Combining homology modeling, docking, molecular dynamics simulations, and free energy calculations, we find that all compounds bind similarly to the active sites of both kinases with their imidazopyridine and imidazopyrazine cores anchored to the hinge regions of the kinases through hydrogen bonds. In addition, hydrogen bond interactions between the inhibitors and the catalytic Lys78 (Mnk1), Lys113 (Mnk2) and Ser131 (Mnk1), Ser166 (Mnk2) appear to be important for the potency and stability of the bound conformations of the inhibitors. The computed binding free energies (ΔGPred) of these inhibitors are in accord with experimental bioactivity data (pIC50) with correlation coefficients (r(2)) of 0.70 and 0.68 for Mnk1 and Mnk2 respectively. van der Waals energies and entropic effects appear to dominate the binding free energy (ΔGPred) for each Mnk-inhibitor complex studied. The models suggest that the activities of these small molecule inhibitors arise from interactions with multiple residues in the active sites, particularly with the hydrophobic residues.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/química , Estrutura Secundária de Proteína
18.
Proteins ; 83(1): 153-68, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25370927

RESUMO

The epidermal growth factor receptor (EGFR) is an important target in the treatment of cancer. A very potent antibody, mAb806, has been developed against overexpressed EGFR and was found to be particularly active in brain tumors. Structural studies reveal that it binds to an epitope on the extracellular region of the EGFR. However, this epitope is cryptic/buried in crystal structures of the active (untethered) and inactive (tethered) EGFR, and it is unclear as to how the antibody interacts with this region. To explore this interaction, we combined molecular docking, steered molecular dynamics, and equilibrium molecular dynamics simulations. Our computational models reveal that the antibody induces local unfolding around the epitope to form the antibody-EGFR complex. In addition, regions in the vicinity of the epitope also modulate the interaction, which are in accordance with several other known antibody-antigen interactions, and offers new possibilities for the design of antibodies with increased potency and specificity for this receptor.


Assuntos
Anticorpos Monoclonais/metabolismo , Biologia Computacional , Receptores ErbB/metabolismo , Modelos Moleculares , Cristalografia por Raios X , Epitopos/química , Epitopos/metabolismo , Receptores ErbB/química , Simulação de Acoplamento Molecular , Análise de Componente Principal , Estrutura Terciária de Proteína , Termodinâmica
19.
PLoS Pathog ; 9(9): e1003645, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086136

RESUMO

The treatment of schistosomiasis, a disease caused by blood flukes parasites of the Schistosoma genus, depends on the intensive use of a single drug, praziquantel, which increases the likelihood of the development of drug-resistant parasite strains and renders the search for new drugs a strategic priority. Currently, inhibitors of human epigenetic enzymes are actively investigated as novel anti-cancer drugs and have the potential to be used as new anti-parasitic agents. Here, we report that Schistosoma mansoni histone deacetylase 8 (smHDAC8), the most expressed class I HDAC isotype in this organism, is a functional acetyl-L-lysine deacetylase that plays an important role in parasite infectivity. The crystal structure of smHDAC8 shows that this enzyme adopts a canonical α/ß HDAC fold, with specific solvent exposed loops corresponding to insertions in the schistosome HDAC8 sequence. Importantly, structures of smHDAC8 in complex with generic HDAC inhibitors revealed specific structural changes in the smHDAC8 active site that cannot be accommodated by human HDACs. Using a structure-based approach, we identified several small-molecule inhibitors that build on these specificities. These molecules exhibit an inhibitory effect on smHDAC8 but show reduced affinity for human HDACs. Crucially, we show that a newly identified smHDAC8 inhibitor has the capacity to induce apoptosis and mortality in schistosomes. Taken together, our biological and structural findings define the framework for the rational design of small-molecule inhibitors specifically interfering with schistosome epigenetic mechanisms, and further support an anti-parasitic epigenome targeting strategy to treat neglected diseases caused by eukaryotic pathogens.


Assuntos
Epigênese Genética , Proteínas de Helminto/química , Histona Desacetilases/química , Dobramento de Proteína , Schistosoma mansoni/enzimologia , Animais , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Inibidores de Histona Desacetilases/química , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Estrutura Secundária de Proteína , Schistosoma mansoni/genética
20.
J Chem Inf Model ; 54(10): 3005-19, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25243797

RESUMO

Schistosomiasis, caused by S. mansoni, is a tropical disease that affects over 200 million people worldwide. A novel approach for targeting eukaryotic parasites is to tackle their dynamic epigenetic machinery that is necessary for the extensive phenotypic changes during their life cycle. We recently identified S. mansoni histone deacetylase 8 (smHDAC8) as a potential target for antiparasitic therapy. Here we present results from a virtual screening campaign on smHDAC8. Besides hydroxamates, several sulfonamide-thiazole derivatives were identified by a target-based virtual screening using a homology model of smHDAC8. In vitro testing of 75 compounds identified 8 hydroxamates as potent and lead-like inhibitors of the parasitic HDAC8. Solving of the crystal structure of smHDAC8 with two of the virtual screening hits confirmed the predicted binding mode.


Assuntos
Proteínas de Helminto/antagonistas & inibidores , Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , Ácidos Hidroxâmicos/química , Schistosoma mansoni/química , Sulfonamidas/química , Tiazóis/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Descoberta de Drogas , Proteínas de Helminto/química , Ensaios de Triagem em Larga Escala , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Schistosoma mansoni/enzimologia , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa