Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(5): 2138-2148, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37079077

RESUMO

Biopolymer-based drug delivery systems have gained considerable attention in the field of nanomedicine. In this study, a protein-polysaccharide conjugate was synthesized by covalent conjugation of the enzyme horseradish peroxidase (HRP) with acetalated dextran (AcDex) via a thiol exchange reaction. The resulting bioconjugate shows a dual-responsive behavior in acidic and reductive environments to achieve a controlled release of drugs. The self-assembly of this amphiphilic HRP-AcDex conjugate allows the encapsulation of prodrug indole-3-acetic acid (IAA) into the hydrophobic polysaccharide core. Under slightly acidic conditions, the acetalated polysaccharide reverts to its native hydrophilic form, which triggers the disassembly of micellar nanoparticles and the release of the encapsulated prodrug. The conjugated HRP further activates the prodrug by oxidation of IAA into cytotoxic radicals, which leads to cellular apoptosis. The results indicate that the HRP-AcDex conjugate in combination with IAA has great potential to be used as a novel enzyme prodrug therapy for cancer treatment.


Assuntos
Antineoplásicos , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/química , Apoptose , Peroxidase do Rábano Silvestre/química , Polissacarídeos/farmacologia
2.
Nanomedicine ; 31: 102303, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980549

RESUMO

MicroRNAs (miRNAs) play a fundamental role in the developmental and physiological processes that occur in both animals and plants. AntagomiRs are synthetic antagonists of miRNA, which prevent the target mRNA from suppression. Therapeutic approaches that modulate miRNAs have immense potential in the treatment of chronic respiratory disorders. However, the successful delivery of miRNAs/antagomiRs to the lungs remains a major challenge in clinical applications. A range of materials, namely, polymer nanoparticles, lipid nanocapsules and inorganic nanoparticles, has shown promising results for intracellular delivery of miRNA in chronic respiratory disorders. This review discusses the current understanding of miRNA biology, the biological roles of antagomiRs in chronic respiratory disease and the recent advances in the therapeutic utilization of antagomiRs as disease biomarkers. Furthermore our review provides a common platform to debate on the nature of antagomiRs and also addresses the viewpoint on the new generation of delivery systems that target antagomiRs in respiratory diseases.


Assuntos
Antagomirs/química , Antagomirs/uso terapêutico , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Nanopartículas/química , Animais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Nanocápsulas/química , Nanotecnologia/métodos , Polímeros/química
3.
J Org Chem ; 84(24): 15865-15876, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31741383

RESUMO

BF3·OEt2-catalyzed nucleophilic addition of vinyl azides to in situ generated N-acyl iminium salts obtained from 3-hydroxyisoindolinones is described in this article. The procedure is operationally simple, mild, additive, and metal-free. The reaction proceeds smoothly at ambient temperature with a wide range of 3-hydroxyisoindol-1-ones and vinyl azides to afford 3-oxoisoindoline-1-acetamides (32 examples) in high yields (up to 97%). Furthermore, the synthetic utility of this methodology is depicted by exploiting the reactivity of an amide functionality in the products.

4.
J Control Release ; 337: 629-644, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375688

RESUMO

Nuclear factor κB (NFκB) is a unique protein complex that plays a major role in lung inflammation and respiratory dysfunction. The NFκB signaling pathway, therefore becomes an avenue for the development of potential pharmacological interventions, especially in situations where chronic inflammation is often constitutively active and plays a key role in the pathogenesis and progression of the disease. NFκB decoy oligodeoxynucleotides (ODNs) are double-stranded and carry NFκB binding sequences. They prevent the formation of NFκB-mediated inflammatory cytokines and thus have been employed in the treatment of a variety of chronic inflammatory diseases. However, the systemic administration of naked decoy ODNs restricts their therapeutic effectiveness because of their poor pharmacokinetic profile, instability, degradation by cellular enzymes and their low cellular uptake. Both structural modification and nanotechnology have shown promising results in enhancing the pharmacokinetic profiles of potent therapeutic substances and have also shown great potential in the treatment of respiratory diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. In this review, we examine the contribution of NFκB activation in respiratory diseases and recent advancements in the therapeutic use of decoy ODNs. In addition, we also highlight the limitations and challenges in use of decoy ODNs as therapeutic molecules, cellular uptake of decoy ODNs, and the current need for novel delivery systems to provide efficient delivery of decoy ODNs. Furthermore, this review provides a common platform for discussion on the existence of decoy ODNs, as well as outlining perspectives on the latest generation of delivery systems that encapsulate decoy ODNs and target NFκB in respiratory diseases.


Assuntos
NF-kappa B , Pneumonia , Citocinas , Humanos , Oligodesoxirribonucleotídeos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa