RESUMO
BACKROUND: Cytosolic glutaredoxin 2 (Grx2c) controls axonal outgrowth and is specifically induced in many cancer cell lines. We thus hypothesized that Grx2c promotes cell motility and invasiveness. METHODS: We characterized the impact of Grx2c expression in cell culture models. We combined stable isotope labeling, phosphopeptide enrichment, and high-accuracy mass spectrometry to characterize the underlying mechanisms. RESULTS: The most prominent associations were found with actin dynamics, cellular adhesion, and receptor-mediated signal transduction, processes that are crucial for cell motility. For instance, collapsin response mediator protein 2, a protein involved in the regulation of cytoskeletal dynamics, is regulated by Grx2c through a redox switch that controls the phosphorylation state of the protein as well. Cell lines expressing Grx2c showed dramatic alterations in morphology. These cells migrated two-fold faster and gained the ability to infiltrate a collagen matrix. CONCLUSIONS: The expression of Grx2c promotes cell migration, and may negatively correlate with cancer-specific survival. GENERAL SIGNIFICANCE: Our results imply critical roles of Grx2c in cytoskeletal dynamics, cell adhesion, and cancer cell invasiveness.