Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 134(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37073118

RESUMO

AIMS: Elucidating the identity of an isolate of Aspergillus sp. obtained during searches for anti-coffee leaf rust (CLR) biocontrol agents, from healthy coffee berry samples, preliminarily verify whether it is an aflatoxin-producer, confirm its ability to grow as an endophyte in healthy coffee tissues and assess its biocontrol potential against CLR. METHODS AND RESULTS: One, among hundreds of fungal isolates fungus were obtained from healthy coffee tissues belonged to Aspergillus (isolate COAD 3307). A combination of morphology features and molecular analyses; including four regions-internal transcribed spacer, second-largest subunit of RNA polymerase (RPB2), ß-tubulin (BenA) and calmodulin (CAL)-identified COAD 3307 as Aspergillus flavus. Inoculations of healthy Coffea arabica with COAD 3307 confirmed its establishment as an endophyte in leaves, stems, and roots. Treatment of C. arabica plants by combinated applications of COAD 3307 on aerial parts and in the soil, significantly (P > .0001) reduced CLR severity as compared to controls. Thin-layer chromatography indicated that COAD 3307 is not an aflatoxin-producing isolate. In order to confirm this result, the extract was injected into high-performance liquid chromatography system equipped with a fluorescence detector, and no evidence of aflatoxin was found. CONCLUSIONS: COAD 3307 is an endophytic isolate of A. flavus-a species that has never been previously recorded as an endophyte of Coffea spp. It is a non-aflatoxin producing strain that has an anti-CLR effect and merits further evaluation as a biocontrol agent.


Assuntos
Aflatoxinas , Basidiomycota , Coffea , Aspergillus flavus , Camarões , Basidiomycota/genética , Aspergillus , Doenças das Plantas/microbiologia , Coffea/microbiologia
2.
Fungal Biol ; 128(5): 1917-1932, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39059847

RESUMO

Here, we report on a Cordyceps species entering into a multi-trophic, multi-kingdom association. Cordyceps cateniannulata, isolated from the stem of wild Coffea arabica in Ethiopia, is shown to function as an endophyte, a mycoparasite and an entomopathogen. A detailed polyphasic taxonomic study, including a multilocus phylogenetic analysis, confirmed its identity. An emended description of C. cateniannulata is provided herein. Previously, this species was known as a pathogen of various insect hosts in both the Old and New World. The endophytic status of C. cateniannulata was confirmed by re-isolating it from inoculated coffee plants. Inoculation studies have further shown that C. cateniannulata is a mycoparasite of Hemileia vastatrix, as well as an entomopathogen of major coffee pests; infecting and killing Hypothenemus hampei and Leucoptera coffeella. This is the first record of C. cateniannulata from Africa, as well as an endophyte and a mycoparasite. The implications for its use as a biocontrol agent are discussed.


Assuntos
Coffea , Cordyceps , Endófitos , Filogenia , Endófitos/classificação , Endófitos/isolamento & purificação , Endófitos/genética , Endófitos/fisiologia , Cordyceps/genética , Cordyceps/classificação , Coffea/microbiologia , Coffea/parasitologia , Animais , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Etiópia , DNA Fúngico/genética , DNA Fúngico/química , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/química , Caules de Planta/microbiologia , Caules de Planta/parasitologia , Análise de Sequência de DNA , Análise por Conglomerados
3.
J Fungi (Basel) ; 9(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36836362

RESUMO

During surveys conducted in South America and Africa to identify natural fungal enemies of coffee leaf rust (CLR), Hemileia vastatrix, over 1500 strains were isolated, either as endophytes from healthy tissues of Coffea species or as mycoparasites growing on rust pustules. Based on morphological data, eight isolates-three isolated from wild or semiwild coffee and five from Hemileia species on coffee, all from Africa-were provisionally assigned to the genus Clonostachys. A polyphasic study of their morphological, cultural and molecular characteristics-including the Tef1 (translation elongation factor 1 alpha), RPB1 (largest subunit of RNA polymerase II), TUB (ß-tubulin) and ACL1 (ATP citrate lyase) regions-confirmed these isolates as belonging to three species of the genus Clonostachys: namely C. byssicola, C. rhizophaga and C. rosea f. rosea. Preliminary assays were also conducted to test the potential of the Clonostachys isolates to reduce CLR severity on coffee under greenhouse conditions. Foliar and soil applications indicated that seven of the isolates had a significant effect (p < 0.05) in reducing CLR severity. In parallel, in vitro tests that involved conidia suspensions of each of the isolates together with urediniospores of H. vastatrix resulted in high levels of inhibition of urediniospore germination. All eight isolates showed their ability to establish as endophytes in C. arabica during this study, and some proved to be mycoparasites of H. vastatrix. In addition to reporting the first records of Clonostachys associated with healthy coffee tissues and with Hemileia rusts of coffee, this work provides the first evidence that Clonostachys isolates have potential as biological control agents against CLR.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa