Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 556(7700): 231-234, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618821

RESUMO

Globally accelerating trends in societal development and human environmental impacts since the mid-twentieth century 1-7 are known as the Great Acceleration and have been discussed as a key indicator of the onset of the Anthropocene epoch 6 . While reports on ecological responses (for example, changes in species range or local extinctions) to the Great Acceleration are multiplying 8, 9 , it is unknown whether such biotic responses are undergoing a similar acceleration over time. This knowledge gap stems from the limited availability of time series data on biodiversity changes across large temporal and geographical extents. Here we use a dataset of repeated plant surveys from 302 mountain summits across Europe, spanning 145 years of observation, to assess the temporal trajectory of mountain biodiversity changes as a globally coherent imprint of the Anthropocene. We find a continent-wide acceleration in the rate of increase in plant species richness, with five times as much species enrichment between 2007 and 2016 as fifty years ago, between 1957 and 1966. This acceleration is strikingly synchronized with accelerated global warming and is not linked to alternative global change drivers. The accelerating increases in species richness on mountain summits across this broad spatial extent demonstrate that acceleration in climate-induced biotic change is occurring even in remote places on Earth, with potentially far-ranging consequences not only for biodiversity, but also for ecosystem functioning and services.


Assuntos
Altitude , Biodiversidade , Mapeamento Geográfico , Aquecimento Global/estatística & dados numéricos , Plantas/classificação , Europa (Continente) , História do Século XX , História do Século XXI , Temperatura
2.
Ecology ; 99(1): 148-157, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29065214

RESUMO

Successional dynamics in plant community assembly may result from both deterministic and stochastic ecological processes. The relative importance of different ecological processes is expected to vary over the successional sequence, between different plant functional groups, and with the disturbance levels and land-use management regimes of the successional systems. We evaluate the relative importance of stochastic and deterministic processes in bryophyte and vascular plant community assembly after fire in grazed and ungrazed anthropogenic coastal heathlands in Northern Europe. A replicated series of post-fire successions (n = 12) were initiated under grazed and ungrazed conditions, and vegetation data were recorded in permanent plots over 13 years. We used redundancy analysis (RDA) to test for deterministic successional patterns in species composition repeated across the replicate successional series and analyses of co-occurrence to evaluate to what extent species respond synchronously along the successional gradient. Change in species co-occurrences over succession indicates stochastic successional dynamics at the species level (i.e., species equivalence), whereas constancy in co-occurrence indicates deterministic dynamics (successional niche differentiation). The RDA shows high and deterministic vascular plant community compositional change, especially early in succession. Co-occurrence analyses indicate stochastic species-level dynamics the first two years, which then give way to more deterministic replacements. Grazed and ungrazed successions are similar, but the early stage stochasticity is higher in ungrazed areas. Bryophyte communities in ungrazed successions resemble vascular plant communities. In contrast, bryophytes in grazed successions showed consistently high stochasticity and low determinism in both community composition and species co-occurrence. In conclusion, stochastic and individualistic species responses early in succession give way to more niche-driven dynamics in later successional stages. Grazing reduces predictability in both successional trends and species-level dynamics, especially in plant functional groups that are not well adapted to disturbance.


Assuntos
Ecossistema , Incêndios , Ecologia , Europa (Continente) , Processos Estocásticos
3.
Appl Veg Sci ; 20(2): 164-171, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30245580

RESUMO

BACKGROUND: Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and environmental changes over the past decades. Most historical plots, however, are not permanently marked and uncertainty in plot location, in addition to observer bias and seasonal bias, may add significant error to temporal change. These errors may have major implications for the reliability of studies on long-term environmental change and deserve closer attention of vegetation ecologists. MATERIAL & METHODS: Vegetation data obtained from the resurveying of non-permanently marked plots are assessed for their potential to study environmental-change effects on plant communities and the challenges the use of such data have to meet. We describe the properties of vegetation resurveys distinguishing basic types of plots according to relocation error, and we highlight the potential of such data types for studying vegetation dynamics and their drivers. Finally, we summarise the challenges and limitations of resurveying non-permanently marked vegetation plots for different purposes in environmental change research. RESULTS AND CONCLUSIONS: Resampling error is caused by three main independent sources of error: error caused by plot relocation, observer bias, and seasonality bias. For relocation error, vegetation plots can be divided into permanent and non-permanent plots, while the latter are further divided into quasi-permanent (with approximate relocation) and non-traceable (with random relocation within a sampled area) plots. To reduce the inherent sources of error in resurvey data, the following precautions should be followed: (i) resurvey historical vegetation plots whose approximate plot location within a study area is known; (ii) consider all information available from historical studies in order to keep plot relocation errors low; (iii) resurvey at times of the year when vegetation development is comparable to the historical survey to control for seasonal variability in vegetation; (iv) keep a high level of experience of the observers to keep observer bias low; and (v) edit and standardise datasets before analyses.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa