Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612865

RESUMO

In recent years, the extensive exploration of Gold Nanoparticles (AuNPs) has captivated the scientific community due to their versatile applications across various industries. With sizes typically ranging from 1 to 100 nm, AuNPs have emerged as promising entities for innovative technologies. This article comprehensively reviews recent advancements in AuNPs research, encompassing synthesis methodologies, diverse applications, and crucial insights into their toxicological profiles. Synthesis techniques for AuNPs span physical, chemical, and biological routes, focusing on eco-friendly "green synthesis" approaches. A critical examination of physical and chemical methods reveals their limitations, including high costs and the potential toxicity associated with using chemicals. Moreover, this article investigates the biosafety implications of AuNPs, shedding light on their potential toxic effects on cellular, tissue, and organ levels. By synthesizing key findings, this review underscores the pressing need for a thorough understanding of AuNPs toxicities, providing essential insights for safety assessment and advancing green toxicology principles.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Indústrias , Tecnologia
2.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003228

RESUMO

Organophosphorus pesticides (OPs) are important factors in the etiology of many diseases, including obesity and type 2 diabetes mellitus. The aim of this study was to investigate the effect of a representative of OPs, chlorpyrifos (CPF), on viability, proliferation, differentiation, and fatty acid uptake in 3T3-L1 cells. The effect of CPF exposure on preadipocyte proliferation was examined by the MTT, NR, and BrdU assays. The impact of CPF exposure on the differentiation of preadipocytes into mature adipocytes was evaluated by Oil Red O staining and RT-qPCR. The effect of CPF on free fatty acid uptake in adipocytes was assessed with the fluorescent dye BODIPY. Our experiments demonstrated that exposure to CPF decreased the viability of 3T3-L1 cells; however, it was increased when the cells were exposed to low concentrations of the pesticide. Exposure to CPF inhibited the proliferation and differentiation of 3T3-L1 preadipocytes. CPF exposure resulted in decreased lipid accumulation, accompanied by down-regulation of the two key transcription factors in adipogenesis: C/EBPα and PPARγ. Exposure to CPF increased basal free fatty acid uptake in fully differentiated adipocytes but decreased this uptake when CPF was added during the differentiation process. Increased free fatty acid accumulation in fully differentiated adipocytes may suggest that CPF leads to adipocyte hypertrophy, one of the mechanisms leading to obesity, particularly in adults. It can therefore be concluded that CPF may disturb the activity of preadipocytes and adipocytes, although the role of this pesticide in the development of obesity requires further research.


Assuntos
Clorpirifos , Diabetes Mellitus Tipo 2 , Praguicidas , Animais , Camundongos , Clorpirifos/toxicidade , Células 3T3-L1 , Ácidos Graxos/farmacologia , Ácidos Graxos não Esterificados/farmacologia , Compostos Organofosforados/farmacologia , Praguicidas/toxicidade , Diferenciação Celular , Adipogenia , Obesidade , Proliferação de Células , PPAR gama/genética
3.
Pestic Biochem Physiol ; 174: 104812, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33838712

RESUMO

Skin acts as a mechanical barrier between human body and environment. Epidermal cells are regularly exposed to many physiological and environmental stressors, such as pesticides, like chlorpyrifos (CPS). It is recognised that CPS may affect metabolism of other exo- and endogenous substances by affecting enzyme activity and expression. This study aims to investigate the effect of CPS on expression of CYP27A1, CYP27B1 and CYP24A1, the enzymes involved in synthesis and metabolism of vitamin D3, in human keratinocytes HaCaT and human fibroblasts BJ. Synthesis of vitamin D3 in cells was initiated by irradiating with UVB. Expression of CYP27A1, CYP27B1 and CYP24A1 was evaluated by RT-qPCR and Western blot. Our experiments revealed that expression of all tested cytochrome P450 isoforms in cells exposed to CPS changed significantly. Exposure of HaCaT keratinocytes to CPS decreased CYP27A1 mRNA levels, but increased CYP27B1 and CYP24A1 mRNA levels. This was confirmed at the protein level, except for the CYP27A1 expression. Outcome for the BJ cells was however less conclusive. Though exposure to CPS decreased CYP27A1 and CYP27B1 mRNA levels, at protein level increasing concentration of CPS and UVB intensity induced expression of CYP27A1 and CYP24A1. The expression of CYP27B1 isoform decreased in line with mRNA level. Nevertheless, it can be concluded that CPS may therefore interrupt vitamin D3 metabolism in skin cells, but further studies are required to better understand such mechanisms.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase , Clorpirifos , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Clorpirifos/toxicidade , Colecalciferol , Pele , Vitamina D , Vitamina D3 24-Hidroxilase/genética
4.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33653008

RESUMO

Gold nanoparticles (AuNPs) are foreseen as a promising tool in nanomedicine, both as drug carriers and radiosensitizers. They have been also proposed as a potential anticancer drug due to the anti-angiogenic effect in tumor tissue. In this work we investigated the effect of citrate-coated AuNPs of nominal diameter 20 nm on the growth and metastatic potential of 4T1 cells originated from a mouse mammary gland tumor inoculated into the mammary fat pad of Balb/ccmdb mice. To evaluate whether AuNPs can prevent the tumor growth, one group of inoculated mice was intragastrically (i.g.) administered with 1 mg/kg of AuNPs daily from day 1 to day 14 after cancer cell implantation. To evaluate whether AuNPs can attenuate the tumor growth, the second group was intravenously (i.v.) administered with 1 or 5 mg/kg of AuNPs, twice on day 5 and day 14 after inoculation. We did not observe any anticancer activity of i.v. nor i.g. administered AuNPs, as they did not affect neither the primary tumor growth rate nor the number of lung metastases. Unexpectedly, both AuNP treatment regimens caused a marked vasodilating effect in the tumor tissue. As no change of potential angiogenic genes (Fgf2, Vegfa) nor inducible nitric oxygenase (Nos2) was observed, we proposed that the vasodilation was caused by AuNP-dependent decomposition of nitrosothiols and direct release of nitric oxide in the tumor tissue.


Assuntos
Ácido Cítrico/uso terapêutico , Ouro/uso terapêutico , Neoplasias Mamárias Animais/irrigação sanguínea , Nanopartículas Metálicas/uso terapêutico , Animais , Linhagem Celular Tumoral , Ácido Cítrico/administração & dosagem , Feminino , Ouro/administração & dosagem , Neoplasias Mamárias Animais/patologia , Neoplasias Mamárias Animais/terapia , Nanopartículas Metálicas/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Nanomedicina , Tamanho da Partícula , Vasodilatação
5.
Molecules ; 25(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443890

RESUMO

Silver nanoparticles (AgNPs) are used in many fields of industry and medicine. Despite the well-established antimicrobial activity, AgNPs are foreseen to be used as anticancer drugs due to the unusual feature-inability to induce drug resistance in cancer cells. The aim of the study was to assess biological activity of AgNPs against MDA-MB-436 cells. The cells were derived from triple-negative breast cancer, a type of breast cancer with poor prognosis and is particularly difficult to cure. AgNPs were toxic to MDA-MB-436 cells and the probable mechanism of toxicity was the induction of oxidative stress. These promising effects, giving the opportunity to use AgNPs as an anti-cancer agent should, however, be treated with caution in the light of further results. Namely, the treatment of MDA-MB-436 cells with AgNPs was associated with the increased secretion of several cytokines and chemokines, which were important in breast cancer metastasis. Finally, changes in the actin cytoskeleton of MDA-MB-436 cells under the influence of AgNPs treatment were also observed.


Assuntos
Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Nanopartículas Metálicas/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Estresse Oxidativo/efeitos dos fármacos , Prata/química , Neoplasias de Mama Triplo Negativas/patologia
6.
Environ Res ; 178: 108685, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31479978

RESUMO

Widespread use and the bioaccumulation of pesticides in the environment lead to the contamination of air, water, soil and agricultural resources. A huge body of evidence points to the association between the pesticide exposure and increase in the incidence of chronic diseases, e.g. cancer, birth defects, reproductive disorders, neurodegenerative, cardiovascular and respiratory diseases, developmental disorders, metabolic disorders, chronic renal disorders or autoimmune diseases. Organophosphorus compounds are among the most widely used pesticides. A growing body of evidence is suggesting the potential interdependence between the organophosphorus pesticides (OPs) exposure and risk of obesity and type 2 diabetes mellitus (T2DM). This article reviews the current literature to highlight the latest in vitro and in vivo evidences on the possible influence of OPs on obesity and T2DM development, as well as epidemiological evidence for the metabolic toxicity of OPs in humans. The article also draws attention to the influence of maternal OPs exposure on offspring. Summarized studies suggest that OPs exposure is associated with metabolic changes linked with obesity and T2DM indicated that such exposures may increase risk or vulnerability to other contributory components.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Exposição Ambiental/estatística & dados numéricos , Obesidade/epidemiologia , Compostos Organofosforados/toxicidade , Praguicidas/toxicidade , Humanos
7.
Pestic Biochem Physiol ; 154: 17-22, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30765052

RESUMO

Skin, the organ responsible for vitamin D synthesis, is fully exposed to many xenobiotics, e.g. polycyclic aromatic hydrocarbons and pesticides. A broad spectrum organophosphorus insecticides (OP's), such as chlorpyrifos (CPS), are commonly used in agriculture and to control domestic insects. Thus, the aim of this study was to investigate the effect of chlorpyrifos, on the expression of vitamin D3 receptor (VDR) in human keratinocytes cell line HaCaT and fibroblasts cell line BJ. The impact of CPS and UVB radiation on cell viability were examined by Neutral Red assay. The effect of CPS on VDR expression was evaluated by RT-qPCR and flow cytometry (FC). The presented study demonstrated that exposure to CPS and UVB significantly affects the viability of HaCaT and BJ cells lines. Results also revealed that exposure to CPS induced the expression at mRNA and protein level of VDR nuclear receptor in both cell lines exposed to UVB. In HaCaT incubated with 250 µM CPS and 15 mJ/cm2 UVB, the relative VDR expression was ∼2-fold higher; whereas in BJ incubated with 250 µM CPS and 20 mJ/cm2, UVB was∼3-fold higher. Results from FC confirmed this result, as VDR expression increased by ~250% in HaCaT incubated with 250 µM CPS and 20 mJ/cm2 UVB, and in BJ incubated with 250 µM CPS, and 20 mJ/cm2 UVB cells VDR expression increased by ~190%, compared with control. It can therefore be concluded that OPs pesticide might interfere with vitamin D3 metabolism in skin cells.


Assuntos
Clorpirifos/toxicidade , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Inseticidas/toxicidade , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Receptores de Calcitriol/fisiologia , Raios Ultravioleta , Linhagem Celular , Fibroblastos/fisiologia , Humanos , Queratinócitos/fisiologia
8.
Arch Gynecol Obstet ; 295(4): 817-825, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28190105

RESUMO

PURPOSE: Breast cancer is one of the most common female cancers. Moreover, despite the progress in medicine, its mortality rate is still very high. Therefore, researchers are constantly looking for new prognostic factors, which may simplify disease diagnosis and optimize the therapy. Metastases are responsible for the majority of deaths caused by breast cancer. Epithelial-mesenchymal transition is one of the mechanisms of metastasis, which is controlled by specific transcription factors. In the recent years, many researchers studied the prognostic value of factors promoting the epithelial-mesenchymal transition in patients with breast cancer. This work is an attempt to summarize the current state of knowledge on this issue. METHODS: A systemic search of peer-reviewed articles published between November 2005 and February 2016 was performed using PubMed/MEDLINE database. Most cited articles constituted original papers, although single review articles were also included. RESULTS: Based on the so far conducted studies, a promising conclusion can be drawn, that several described factors might serve as a putative negative prognostic marker in breast cancer. CONCLUSIONS: Obtained results of this review should encourage researchers to conduct further clinical trials on large patient groups which will evaluate the prognostic value of EMT transcription factors in breast cancer course.


Assuntos
Neoplasias da Mama/diagnóstico , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Neoplasias da Mama/patologia , Feminino , Marcadores Genéticos , Sequências Hélice-Volta-Hélice , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/fisiologia , Humanos , Modelos Genéticos , Prognóstico , Dedos de Zinco
9.
Med Pr ; 68(3): 423-432, 2017 May 16.
Artigo em Polonês | MEDLINE | ID: mdl-28512369

RESUMO

Nanotechnology has been used in many branches of industry, including agriculture, where nanomaterials are used as carriers of chemical plant protection compounds, as well as active ingredients. Meanwhile, the effects of nanopesticides exposure on the human body are unknown. Due to their occupation, farmers should be particularly monitored. This paper summarizes the use of nanoparticles in agriculture, the route of potential exposure for agricultural workers and the current state of knowledge of nanopesticides toxicity to mammalian cells. The authors also discuss techniques for detecting nanoparticles in the workplace, as well as biomarkers and effects of exposure. The results of this review indicate that the use of nanotechnology in agriculture can bring measurable benefits by reducing the amount of chemicals used for plant protection. However, there is no research available to determine whether or not the use of pesticide nanoformulations increases the harmful effects of pesticides. Moreover, the results of research on cell lines and in animal models suggest that nanoparticles used as active substance are toxic to mammalian cells. Interestingly, there is also a complete lack of epidemiological studies on this subject. In the nearest future the effects of exposure to nanopesticides may require a particular attention paid by scientists and medical doctors who, treat agricultural workers and their families. Med Pr 2017;68(3):423-432.


Assuntos
Fazendeiros , Nanopartículas/toxicidade , Exposição Ocupacional , Praguicidas/toxicidade , Biomarcadores , Humanos , Nanopartículas/química
10.
Cent Eur J Immunol ; 40(3): 349-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26648780

RESUMO

One of the potential therapeutic methods of cancer treatment is the immunotherapy with monoclonal antibodies. This kind of therapy, although devoid of serious side effects, has often insufficient efficacy. The presence of complement inhibitors on the cancer cells, which are able to inactivate complement-mediated immune response represents one of the main reasons for the inefficiency of such therapy. In our studies we investigated the expression of main membrane-bound and fluid-phase complement regulators: CD55, CD59 and factor H/factor H-like in tumour samples of ovarian and corpus uteri cancer. Tissue samples were collected from 50 patients and stained immunohistochemically, with the use of peroxidase-based immunodetection system. Immunohistochemical analysis revealed that complement inhibitors are present in examined tumors although their presence is heterogenous. The most prevalent is the presence of factor H/H-like, localized mostly in tumor stroma and within vascular structures. Membrane bound complement inhibitors are less prominently expressed by cancer cells. CD55 was detected in low percentage of cells, predominantly within cancer tubules. CD59 immunoreactivity was more prevalent in cancer cells, and was localized particularly at the margin of cancer cell tubules. Our results demonstrate that the most prominent complement inhibitor in cancer of ovary and corpus uteri origin is factor H/factor H-like. Blocking or downregulation of this inhibitor should be taken into consideration with regards to improving the efficiency of immunotherapy with monoclonal antibodies.

11.
Ann Agric Environ Med ; 30(3): 566-569, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37772536

RESUMO

INTRODUCTION AND OBJECTIVE: The general population is exposed to silver nanoparticles (AgNPs) released into the environment, e.g. through the respiratory tract. Lung cancers are among the most frequently diagnosed and deadly malignancies, often diagnosed at late stage with existing distant metastases. The aim of the study was to determine the activity of AgNPs against A549 lung cancer cells. MATERIAL AND METHODS: A549 cells and AgNPs were used in the study. Cytotoxicity was tested by MTT and NR assays. Oxidative stress was determined by measuring malonyldialdehyde and level of free -SH groups Proteins secretion was assessed using the Human Profiler Cytokine Array Kit assay. RESULTS: AgNPs reduce A549 cells viability and induce oxidative stress. They also lead to increased secretion of several proinflammatory proteins, which stimulate metastasis. CONCLUSIONS: AgNPs exhibit direct anti-cancer effect, however, their potentially promethastic effect encourages further work on the safety of nanomaterials.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Nanopartículas Metálicas , Humanos , Células A549 , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Sobrevivência Celular
12.
Cancers (Basel) ; 15(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067245

RESUMO

A common feature of Parkinson's disease (PD) and melanoma is their starting points being based on cells capable of converting tyrosine into melanin. Melanocytes produce two types of melanin: eumelanin and pheomelanin. These dyes are designed to protect epidermal cells from the harmful effects of UV radiation. Neurones of the substantia nigra, which degenerate during PD, produce neuromelanin, the physiological role of which is not fully explained. This article discusses the potential role of melanins in the pathogenesis of both diseases. Melanins, due to their ability to accumulate toxic substances, may become their sources over time. The use of glutathione for the synthesis of pheomelanins and neuromelanins may reduce the antioxidant capacity of cells, leading to an excessive synthesis of free radicals. This study also tested the hypothesis that certain drugs used in the treatment of PD (L-DOPA, MAO-B and COMT inhibitors, and amantadine), aimed at increasing dopamine concentration, could potentially contribute to the development of melanoma. The role and properties of melanins should continue to be researched. Whether excessive melanin synthesis or its accumulation in the extracellular space may be factors initiating the development of diseases remains an open question.

13.
Materials (Basel) ; 16(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068008

RESUMO

The interest in nanoparticles (NPs) and their effects on living organisms has been continuously growing in the last decades. A special interest is focused on the effects of NPs on the central nervous system (CNS), which seems to be the most vulnerable to their adverse effects. Non-metallic NPs seem to be less toxic than metallic ones; thus, the application of non-metallic NPs in medicine and industry is growing very fast. Hence, a closer look at the impact of non-metallic NPs on neural tissue is necessary, especially in the context of the increasing prevalence of neurodegenerative diseases. In this review, we summarize the current knowledge of the in vitro and in vivo neurotoxicity of non-metallic NPs, as well as the mechanisms associated with negative or positive effects of non-metallic NPs on the CNS.

14.
J Occup Med Toxicol ; 18(1): 23, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803377

RESUMO

BACKGROUND: Although chlorpyrifos (CPS) has been banned in many developed countries, it still remains one of the best-selling pesticides in the world. Widespread environmental and occupational exposure to CPS pose a serious risk to human health. Another environmental factor that can adversely affect human health is ultraviolet radiation B (UVB, 280-315 nm wave length). Here we attempt determine if exposure to CPS can modify toxic effects of UVB. Such situation might be a common phenomenon in agriculture workers, where exposure to both factors takes place. METHODS: Two skin cell lines; namely human immortalized keratinocytes HaCaT and BJ human fibroblasts were used in this study. Cytotoxicity was investigated using a cell membrane damage detection assay (LDH Cytotoxicity Assay), a DNA damage detection assay (Comet Assay), an apoptosis induction detection assay (Apo-ONE Homogeneous Caspase-3/7 Assay) and a cell reactive oxygen species detection assay (ROS-Glo H2O2 assay). Cytokine IL-6 production was also measured in cells using an ELISA IL-6 Assay. RESULTS: Pre-incubation of skin cells with CPS significantly increased UVB-induced toxicity at the highest UVB doses (15 and 20 mJ/cm2). Also pre-exposure of BJ cells to CPS significantly increased the level of DNA damage, except for 20 mJ/cm2 UVB. In contrast, pre-exposure of HaCaT cells, to CPS prior to UVB radiation did not cause any significant changes. A decrease in caspase 3/7 activity was observed in HaCaT cells pre-exposed to 250 µM CPS and 5 mJ/cm2 UVB. Meanwhile, no statistically significant changes were observed in fibroblasts. In HaCaT cells, pre-exposure to CPS resulted in a statistically significant increase in ROS production. Also, in BJ cells, similar results were obtained except for 20 mJ/cm2. Interestingly, CPS seems to inhibited IL-6 production in HaCaT and BJ cells exposed to UVB (in the case of HaCaT cells for all UVB doses, while for BJ cells only at 15 and 20 mJ/cm2). CONCLUSIONS: In conclusion, the present study indicates that CPS may contribute to the increased UVB-induced toxicity in skin cells, which was likely due to the induction of ROS formation along with the generation of DNA damage. However, further studies are required to gain better understanding of the mechanisms involved.

15.
Med Pr ; 74(6): 541-548, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38160426

RESUMO

BACKGROUND: Exposure to nanoparticles (NPs) can occur in a variety of occupational situations. Ultrafine particles of natural and anthropological origin toxicity has been described in epidemiological studies. Meanwhile, the risks associated with NPs exposure are not comprehensively assessed. A wide spectrum of NPs toxicity has been demonstrated, mainly through the induction of oxidative stress and inflammatory mediators. Among the newly described mechanisms of NPs toxicity is the induction of fibrosis via the epithelial-mesenchymal transition (EMT), which is also a key mechanism of cancer metastasis. The effect of NPs on EMT in the context of metastasis has not been sufficiently described so far, and the results of studies do not allow for the formulation of unambiguous conclusions. Therefore, the aim of the work was to determine the biological activity of silver NPs against MDA-MB-436 triple-negative breast cancer cells. MATERIAL AND METHODS: Exposure to nanoparticles (NPs) can occur in a variety of occupational situations. Ultrafine particles of natural and anthropological origin toxicity has been described in epidemiological studies. Meanwhile, the risks associated with NPs exposure are not comprehensively assessed. A wide spectrum of NPs toxicity has been demonstrated, mainly through the induction of oxidative stress and inflammatory mediators. Among the newly described mechanisms of NPs toxicity is the induction of fibrosis via the epithelial-mesenchymal transition (EMT), which is also a key mechanism of cancer metastasis. The effect of NPs on EMT in the context of metastasis has not been sufficiently described so far, and the results of studies do not allow for the formulation of unambiguous conclusions. Therefore, the aim of the work was to determine the biological activity of silver NPs against MDA-MB-436 triple-negative breast cancer cells. RESULTS: Silver nanoparticles (AgNPs) cause a statistically significant increase in relative expression of all tested mesenchymal EMT markers - cadherin 2, vimentin, matrix metalloproteinase 2 and matrix metalloproteinase 9. At the same time, reduction of epithelial cadherin 1 expression was observed. The level of MDA-MB-436 migration and TGF-beta 1 secretion was slighty increased in AgNPs-treated cells, with no influence on invasion potential. CONCLUSIONS: Potentially prometastatic effect of AgNPs encourages further work on the safety of nanomaterials. Med Pr Work Health Saf. 2023;74(6):541-8.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Linhagem Celular Tumoral , Metaloproteinase 2 da Matriz/farmacologia , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Fibrose , Mediadores da Inflamação/farmacologia , Material Particulado , Transição Epitelial-Mesenquimal
16.
Materials (Basel) ; 16(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37297299

RESUMO

The importance of epigenetic changes as a measurable endpoint in nanotoxicological studies is getting more and more appreciated. In the present work, we analyzed the epigenetic effects induced by citrate- and PEG-coated 20 nm silver nanoparticles (AgNPs) in a model consisting of 4T1 breast cancer tumors in mice. Animals were administered with AgNPs intragastrically (1 mg/kg b.w. daily-total dose 14 mg/kg b.w.) or intravenously (administration twice with 1 mg/kg b.w.-total dose 2 mg/kg b.w.). We observed a significant decrease in 5-methylcytosine (5-mC) level in tumors from mice treated with citrate-coated AgNPs regardless of the route of administration. For PEG-coated AgNPs, a significant decrease in DNA methylation was observed only after intravenous administration. Moreover, treatment of 4T1 tumor-bearing mice with AgNPs decreased histone H3 methylation in tumor tissue. This effect was the most pronounced for PEG-coated AgNPs administered intravenously. No changes in histone H3 Lys9 acetylation were observed. The decrease in methylation of DNA and histone H3 was accompanied by changes in expression of genes encoding chromatin-modifying enzymes (Setd4, Setdb1, Smyd3, Suv39h1, Suv420h1, Whsc1, Kdm1a, Kdm5b, Esco2, Hat1, Myst3, Hdac5, Dnmt1, Ube2b, and Usp22) and genes related to carcinogenesis (Akt1, Brca1, Brca2, Mlh1, Myb, Ccnd1, and Src). The significance of the observed changes and the mechanisms responsible for their development are unclear, and more research in this area is warranted. Nevertheless, the present work points to the epigenetic effects as an important level of interaction between nanomaterials and biological systems, which should always be taken into consideration during analysis of the biological activity of nanomaterials and development of nanopharmaceuticals.

17.
Mutagenesis ; 27(5): 551-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22511614

RESUMO

The comet assay or single cell gel electrophoresis has proven to be a versatile and sensitive method of measuring the induction and repair of DNA damage in individual cells. However, one of the drawbacks of the assay is the bias caused by changes in the ability of cells to repair DNA damage in different cell cycle phases. Whereas the bias seems less important when G0 peripheral blood lymphocytes are studied, it might cause problems when proliferating cells are investigated. In this paper, we validate the assumption that the total comet fluorescence intensity corresponds to the position of the cell in the cell cycle and can be used to assign single cells to specific cell cycle phases. To validate the approach, we used a very homogenous blood mononuclear CD34(+) cell population in G0 phase (unstimulated) or stimulated to enter the cell cycle. An analysis of the cell cycle distribution revealed that the 15 comet intensity classes and the 100 comets usually analyzed in a typical comet experiment are sufficient to obtain a reliable cell cycle distribution comparable with the results obtained by the flow cytometry for the same cell population. The effect of the cell cycle position on the results obtained by the comet assay for proliferating and non-proliferating cell populations irradiated with 3 Gy of X-radiation is also discussed.


Assuntos
Ciclo Celular , Ensaio Cometa/métodos , Dano ao DNA , Antígenos CD34/metabolismo , Ciclo Celular/efeitos da radiação , Dano ao DNA/efeitos da radiação , Citometria de Fluxo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos da radiação , Humanos , Imunofenotipagem , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos da radiação , Raios X
18.
Materials (Basel) ; 15(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35683135

RESUMO

The potential anticancer activity of different silver nanoformulations is increasingly recognized. In the present work, we use the model of 4T1 tumor in BALB/ccmdb immunocompetent mice to analyze the impact of citrate- and PEG-coated silver nanoparticles (AgNPs) on the development and metastatic potential of breast cancer. One group of mice was intragastrically administered with 1 mg/kg body weight (b.w.) of AgNPs daily from day 1 to day 14 after cancer cells implantation (total dose 14 mg/kg b.w.). The second group was intravenously administered twice with 1 or 5 mg/kg b.w. of AgNPs. A tendency for lowering tumor volume on day 21 (mean volumes 491.31, 428.88, and 386.83 mm3 for control, AgNPs-PEG, and AgNPs-citrate, respectively) and day 26 (mean volumes 903.20, 764.27, and 672.62 mm3 for control, AgNPs-PEG, and AgNPs-citrate, respectively) has been observed in mice treated intragastrically, but the effect did not reach the level of statistical significance. Interestingly, in mice treated intragastrically with citrate-coated AgNPs, the number of lung metastases was significantly lower, as compared to control mice (the mean number of metastases 18.89, 14.90, and 8.03 for control, AgNPs-PEG, and AgNPs-citrate, respectively). No effect of AgNPs treatment on the number of lung metastases was observed after intravenous administration (the mean number of metastases 12.44, 9.86, 12.88, 11.05, and 10.5 for control, AgNPs-PEG 1 mg/kg, AgNPs-PEG 5 mg/kg, AgNPs-citrate 1 mg/kg, and AgNPs-citrate 5 mg/kg, respectively). Surprisingly, inhibition of metastasis was not accompanied by changes in the expression of genes associated with epithelial-mesenchymal transition. Instead, changes in the expression of inflammation-related genes were observed. The presented results support the antitumor activity of AgNPs in vivo, but the effect was limited to the inhibition of metastasis. Moreover, our results clearly point to the importance of AgNPs coating and route of administration for its anticancer activity. Finally, our study supports the previous findings that antitumor AgNPs activity may depend on the activation of the immune system and not on the direct action of AgNPs on cancer cells.

19.
Int J Med Mushrooms ; 13(6): 525-33, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22181840

RESUMO

This paper describes the study conducted to evaluate the antiproliferative activity of ether and ethanol extracts isolated from Piptoporus betulinus against cancer-derived cells. The fungal material used for extract preparation and further experiments was obtained from in vitro grown strains of P. betulinus. To the best of the authors’ knowledge, this is the first study evaluating antiproliferative potential of in vitro cultured birch polypore fungus. The effect of ether and ethanol extracts on cell proliferation, viability, and adhesion was assessed on colorectal adenocarcinoma cancer cell line LS180, whereas the cytotoxicity effect was investigated in normal colon epithelium-derived cell line CCD 841 CoTr. Studied extracts highly decreased the viability of cancer cells, slightly inhibiting proliferation and tumor cell adhesion in a time- and dose-dependent manner. Cytotoxicity of extracts against cells of normal colon epithelium origin was observed only at the highest studied concentration. The obtained results may seem interesting in comparison with previous studies on water extracts from natural grown P. betulinus. Future research on mycelial extract activity, as well as the content analysis, is needed.


Assuntos
Antineoplásicos/farmacologia , Basidiomycota/química , Etanol/química , Éter/química , Micélio/química , Antineoplásicos/química , Linhagem Celular , Proliferação de Células , Relação Dose-Resposta a Droga , Humanos
20.
Oxid Med Cell Longev ; 2020: 7140496, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32908636

RESUMO

In an infant's body, all the systems undergo significant changes in order to adapt to the new, extrauterine environment and challenges which it poses. Fragile homeostasis can be easily disrupted as the defensive mechanisms are yet imperfect. The activity of antioxidant enzymes, i.e., superoxide dismutase, catalase, and glutathione peroxidase, is low; therefore, neonates are especially vulnerable to oxidative stress. Free radical burden significantly contributes to neonatal illnesses such as sepsis, retinopathy of premature, necrotizing enterocolitis, bronchopulmonary dysplasia, or leukomalacia. However, newborns have an important ally-an inducible heme oxygenase-1 (HO-1) which expression rises rapidly in response to stress stimuli. HO-1 activity leads to production of carbon monoxide (CO), free iron ion, and biliverdin; the latter is promptly reduced to bilirubin. Although CO and bilirubin used to be considered noxious by-products, new interesting properties of those compounds are being revealed. Bilirubin proved to be an efficient free radicals scavenger and modulator of immune responses. CO affects a vast range of processes such as vasodilatation, platelet aggregation, and inflammatory reactions. Recently, developed nanoparticles consisting of PEGylated bilirubin as well as several kinds of molecules releasing CO have been successfully tested on animal models of inflammatory diseases. This paper focuses on the role of heme metabolites and their potential utility in prevention and treatment of neonatal diseases.


Assuntos
Bilirrubina/metabolismo , Monóxido de Carbono/metabolismo , Heme/metabolismo , Doenças do Recém-Nascido/metabolismo , Humanos , Recém-Nascido , Doenças do Recém-Nascido/terapia , Inflamação/complicações , Inflamação/patologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa