Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Cell ; 180(1): 165-175.e16, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31862189

RESUMO

The γ-tubulin ring complex (γ-TuRC) is an essential regulator of centrosomal and acentrosomal microtubule formation, yet its structure is not known. Here, we present a cryo-EM reconstruction of the native human γ-TuRC at ∼3.8 Å resolution, revealing an asymmetric, cone-shaped structure. Pseudo-atomic models indicate that GCP4, GCP5, and GCP6 form distinct Y-shaped assemblies that structurally mimic GCP2/GCP3 subcomplexes distal to the γ-TuRC "seam." We also identify an unanticipated structural bridge that includes an actin-like protein and spans the γ-TuRC lumen. Despite its asymmetric architecture, the γ-TuRC arranges γ-tubulins into a helical geometry poised to nucleate microtubules. Diversity in the γ-TuRC subunits introduces large (>100,000 Å2) surfaces in the complex that allow for interactions with different regulatory factors. The observed compositional complexity of the γ-TuRC could self-regulate its assembly into a cone-shaped structure to control microtubule formation across diverse contexts, e.g., within biological condensates or alongside existing filaments.


Assuntos
Centro Organizador dos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/ultraestrutura , Tubulina (Proteína)/ultraestrutura , Actinas/metabolismo , Microscopia Crioeletrônica/métodos , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
2.
Cell ; 182(6): 1560-1573.e13, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32783916

RESUMO

SARS-CoV-2 is the causative agent of the 2019-2020 pandemic. The SARS-CoV-2 genome is replicated and transcribed by the RNA-dependent RNA polymerase holoenzyme (subunits nsp7/nsp82/nsp12) along with a cast of accessory factors. One of these factors is the nsp13 helicase. Both the holo-RdRp and nsp13 are essential for viral replication and are targets for treating the disease COVID-19. Here we present cryoelectron microscopic structures of the SARS-CoV-2 holo-RdRp with an RNA template product in complex with two molecules of the nsp13 helicase. The Nidovirales order-specific N-terminal domains of each nsp13 interact with the N-terminal extension of each copy of nsp8. One nsp13 also contacts the nsp12 thumb. The structure places the nucleic acid-binding ATPase domains of the helicase directly in front of the replicating-transcribing holo-RdRp, constraining models for nsp13 function. We also observe ADP-Mg2+ bound in the nsp12 N-terminal nidovirus RdRp-associated nucleotidyltransferase domain, detailing a new pocket for anti-viral therapy development.


Assuntos
Metiltransferases/química , RNA Helicases/química , RNA Polimerase Dependente de RNA/química , Proteínas não Estruturais Virais/química , Replicação Viral , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Betacoronavirus/genética , Betacoronavirus/metabolismo , Betacoronavirus/ultraestrutura , Sítios de Ligação , RNA-Polimerase RNA-Dependente de Coronavírus , Microscopia Crioeletrônica , Holoenzimas/química , Holoenzimas/metabolismo , Magnésio/metabolismo , Metiltransferases/metabolismo , Ligação Proteica , RNA Helicases/metabolismo , RNA Viral/química , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2 , Proteínas não Estruturais Virais/metabolismo
3.
Cell ; 175(3): 822-834.e18, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30318141

RESUMO

Mdn1 is an essential AAA (ATPase associated with various activities) protein that removes assembly factors from distinct precursors of the ribosomal 60S subunit. However, Mdn1's large size (∼5,000 amino acid [aa]) and its limited homology to other well-studied proteins have restricted our understanding of its remodeling function. Here, we present structures for S. pombe Mdn1 in the presence of AMPPNP at up to ∼4 Å or ATP plus Rbin-1, a chemical inhibitor, at ∼8 Å resolution. These data reveal that Mdn1's MIDAS domain is tethered to its ring-shaped AAA domain through an ∼20 nm long structured linker and a flexible ∼500 aa Asp/Glu-rich motif. We find that the MIDAS domain, which also binds other ribosome-assembly factors, docks onto the AAA ring in a nucleotide state-specific manner. Together, our findings reveal how conformational changes in the AAA ring can be directly transmitted to the MIDAS domain and thereby drive the targeted release of assembly factors from ribosomal 60S-subunit precursors.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/química , Simulação de Dinâmica Molecular , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimologia , Motivos de Aminoácidos , Animais , Sítios de Ligação , Microscopia Crioeletrônica , Biogênese de Organelas , Ligação Proteica , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Células Sf9 , Spodoptera
4.
Cell ; 167(2): 512-524.e14, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27667686

RESUMO

All cellular proteins are synthesized by ribosomes, whose biogenesis in eukaryotes is a complex multi-step process completed within minutes. Several chemical inhibitors of ribosome function are available and used as tools or drugs. By contrast, we lack potent validated chemical probes to analyze the dynamics of eukaryotic ribosome assembly. Here, we combine chemical and genetic approaches to discover ribozinoindoles (or Rbins), potent and reversible triazinoindole-based inhibitors of eukaryotic ribosome biogenesis. Analyses of Rbin sensitivity and resistance conferring mutations in fission yeast, along with biochemical assays with recombinant proteins, provide evidence that Rbins' physiological target is Midasin, an essential ∼540-kDa AAA+ (ATPases associated with diverse cellular activities) protein. Using Rbins to acutely inhibit or activate Midasin function, in parallel experiments with inhibitor-sensitive or inhibitor-resistant cells, we uncover Midasin's role in assembling Nsa1 particles, nucleolar precursors of the 60S subunit. Together, our findings demonstrate that Rbins are powerful probes for eukaryotic ribosome assembly.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Subunidades Ribossômicas Maiores de Eucariotos/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Triazinas/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Indóis/química , Indóis/isolamento & purificação , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/metabolismo , Relação Estrutura-Atividade , Triazinas/química , Triazinas/isolamento & purificação
5.
Cell ; 157(2): 420-432, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24725408

RESUMO

Diverse cellular processes require microtubules to be organized into distinct structures, such as asters or bundles. Within these dynamic motifs, microtubule-associated proteins (MAPs) are frequently under load, but how force modulates these proteins' function is poorly understood. Here, we combine optical trapping with TIRF-based microscopy to measure the force dependence of microtubule interaction for three nonmotor MAPs (NuMA, PRC1, and EB1) required for cell division. We find that frictional forces increase nonlinearly with MAP velocity across microtubules and depend on filament polarity, with NuMA's friction being lower when moving toward minus ends, EB1's lower toward plus ends, and PRC1's exhibiting no directional preference. Mathematical models predict, and experiments confirm, that MAPs with asymmetric friction can move directionally within actively moving microtubule pairs they crosslink. Our findings reveal how nonmotor MAPs can generate frictional resistance in dynamic cytoskeletal networks via micromechanical adaptations whose anisotropy may be optimized for MAP localization and function within cellular structures.


Assuntos
Antígenos Nucleares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Antígenos Nucleares/química , Fenômenos Biomecânicos , Proteínas de Ciclo Celular/química , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/química , Modelos Biológicos , Proteínas Associadas à Matriz Nuclear/química , Pinças Ópticas
6.
Cell ; 154(4): 716-8, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23953104

RESUMO

Pharmacologic agents capable of increasing kinase function would be useful for treating diseases associated with reduced kinase activity, such as inherited forms of Parkinson's disease. In this issue, Hertz et al. report an innovative approach for activating the Parkinson's-associated kinase PINK1 in cells with an ATP-derived neo-substrate.


Assuntos
Mitocôndrias/metabolismo , Doença de Parkinson/patologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Animais , Humanos
7.
Cell ; 154(2): 377-90, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23870126

RESUMO

Error-free cell division depends on the assembly of the spindle midzone, a specialized array of overlapping microtubules that emerges between segregating chromosomes during anaphase. The molecular mechanisms by which a subset of dynamic microtubules from the metaphase spindle are selected and organized into a stable midzone array are poorly understood. Here, we show using in vitro reconstitution assays that PRC1 and kinesin-4, two microtubule-associated proteins required for midzone assembly, can tag microtubule plus ends. Remarkably, the size of these tags is proportional to filament length. We determine the crystal structure of the PRC1 homodimer and map the protein-protein interactions needed for tagging microtubule ends. Importantly, length-dependent microtubule plus-end-tagging by PRC1 is also observed in dividing cells. Our findings suggest how biochemically similar microtubules can be differentially marked, based on length, for selective regulation during the formation of specialized arrays, such as those required for cytokinesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Microtúbulos/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Cristalografia por Raios X , Citocinese , Dimerização , Humanos , Cinesinas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
8.
Proc Natl Acad Sci U S A ; 121(24): e2316892121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38833472

RESUMO

The loss of function of AAA (ATPases associated with diverse cellular activities) mechanoenzymes has been linked to diseases, and small molecules that activate these proteins can be powerful tools to probe mechanisms and test therapeutic hypotheses. Unlike chemical inhibitors that can bind a single conformational state to block enzyme function, activator binding must be permissive to different conformational states needed for mechanochemistry. However, we do not know how AAA proteins can be activated by small molecules. Here, we focus on valosin-containing protein (VCP)/p97, an AAA unfoldase whose loss of function has been linked to protein aggregation-based disorders, to identify druggable sites for chemical activators. We identified VCP ATPase Activator 1 (VAA1), a compound that dose-dependently stimulates VCP ATPase activity up to ~threefold. Our cryo-EM studies resulted in structures (ranging from ~2.9 to 3.7 Å-resolution) of VCP in apo and ADP-bound states and revealed that VAA1 binds an allosteric pocket near the C-terminus in both states. Engineered mutations in the VAA1-binding site confer resistance to VAA1, and furthermore, modulate VCP activity. Mutation of a phenylalanine residue in the VCP C-terminal tail that can occupy the VAA1 binding site also stimulates ATPase activity, suggesting that VAA1 acts by mimicking this interaction. Together, our findings uncover a druggable allosteric site and a mechanism of enzyme regulation that can be tuned through small molecule mimicry.


Assuntos
Proteína com Valosina , Proteína com Valosina/metabolismo , Proteína com Valosina/química , Proteína com Valosina/genética , Regulação Alostérica , Humanos , Ligação Proteica , Mimetismo Molecular , Microscopia Crioeletrônica , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/química , Sítios de Ligação , Sítio Alostérico , Modelos Moleculares , Conformação Proteica
9.
Cell ; 145(7): 1062-74, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21703450

RESUMO

The microtubule-based metaphase spindle is subjected to forces that act in diverse orientations and over a wide range of timescales. Currently, we cannot explain how this dynamic structure generates and responds to forces while maintaining overall stability, as we have a poor understanding of its micromechanical properties. Here, we combine the use of force-calibrated needles, high-resolution microscopy, and biochemical perturbations to analyze the vertebrate metaphase spindle's timescale- and orientation-dependent viscoelastic properties. We find that spindle viscosity depends on microtubule crosslinking and density. Spindle elasticity can be linked to kinetochore and nonkinetochore microtubule rigidity, and also to spindle pole organization by kinesin-5 and dynein. These data suggest a quantitative model for the micromechanics of this cytoskeletal architecture and provide insight into how structural and functional stability is maintained in the face of forces, such as those that control spindle size and position, and can result from deformations associated with chromosome movement.


Assuntos
Metáfase , Fuso Acromático/química , Fuso Acromático/fisiologia , Xenopus laevis/fisiologia , Animais , Fenômenos Biomecânicos , Extratos Celulares/química , Dineínas/fisiologia , Elasticidade , Cinesinas/fisiologia , Microtúbulos/fisiologia , Óvulo/química , Proteínas de Xenopus/fisiologia
10.
Nat Rev Mol Cell Biol ; 14(1): 25-37, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23258294

RESUMO

In eukaryotes, chromosome segregation during cell division is facilitated by the kinetochore, a multiprotein structure that is assembled on centromeric DNA. The kinetochore attaches chromosomes to spindle microtubules, modulates the stability of these attachments and relays the microtubule-binding status to the spindle assembly checkpoint (SAC), a cell cycle surveillance pathway that delays chromosome segregation in response to unattached kinetochores. Recent studies are shaping current thinking on how each of these kinetochore-centred processes is achieved, and how their integration ensures faithful chromosome segregation, focusing on the essential roles of kinase-phosphatase signalling and the microtubule-binding KMN protein network.


Assuntos
Segregação de Cromossomos , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Microtúbulos/metabolismo , Divisão Celular , Proteínas do Citoesqueleto , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Proteínas Nucleares/metabolismo , Transdução de Sinais , Fuso Acromático/metabolismo
11.
Cell ; 142(3): 433-43, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20691902

RESUMO

Formation of microtubule architectures, required for cell shape maintenance in yeast, directional cell expansion in plants and cytokinesis in eukaryotes, depends on antiparallel microtubule crosslinking by the conserved MAP65 protein family. Here, we combine structural and single molecule fluorescence methods to examine how PRC1, the human MAP65, crosslinks antiparallel microtubules. We find that PRC1's microtubule binding is mediated by a structured domain with a spectrin-fold and an unstructured Lys/Arg-rich domain. These two domains, at each end of a homodimer, are connected by a linkage that is flexible on single microtubules, but forms well-defined crossbridges between antiparallel filaments. Further, we show that PRC1 crosslinks are compliant and do not substantially resist filament sliding by motor proteins in vitro. Together, our data show how MAP65s, by combining structural flexibility and rigidity, tune microtubule associations to establish crosslinks that selectively "mark" antiparallel overlap in dynamic cytoskeletal networks.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Microtúbulos/metabolismo , Proteínas de Ciclo Celular/química , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína , Espectrina/metabolismo
12.
Nucleic Acids Res ; 51(17): 9266-9278, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37560916

RESUMO

The genome of SARS-CoV-2 encodes for a helicase (nsp13) that is essential for viral replication and highly conserved across related viruses, making it an attractive antiviral target. Here we use nanopore tweezers, a high-resolution single-molecule technique, to gain detailed insight into how nsp13 turns ATP-hydrolysis into directed motion along nucleic acid strands. We measured nsp13 both as it translocates along single-stranded DNA or unwinds double-stranded DNA. Our data reveal nsp13's single-nucleotide steps, translocating at ∼1000 nt/s or unwinding at ∼100 bp/s. Nanopore tweezers' high spatiotemporal resolution enables detailed kinetic analysis of nsp13 motion. As a proof-of-principle for inhibition studies, we observed nsp13's motion in the presence of the ATPase inhibitor ATPγS. We construct a detailed picture of inhibition in which ATPγS has multiple mechanisms of inhibition. The dominant mechanism of inhibition depends on the application of assisting force. This lays the groundwork for future single-molecule inhibition studies with viral helicases.


Assuntos
SARS-CoV-2 , Humanos , COVID-19/virologia , DNA Helicases/genética , DNA Helicases/metabolismo , DNA de Cadeia Simples , Cinética , Nucleotídeos , SARS-CoV-2/enzimologia
13.
Proc Natl Acad Sci U S A ; 119(39): e2204068119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122237

RESUMO

Chromosome segregation requires load-bearing interactions across kinetochore fibers and antiparallel microtubule bundles, which constitute the spindle midzone. Mechanical properties of kinetochore fibers have been characterized during metaphase, when the mitotic spindle achieves steady state. However, it has been difficult to probe the mechanics of the spindle midzone that elongates during anaphase. Here, we combine superresolution expansion and electron microscopies, lattice light-sheet imaging, and laser microsurgery to examine how midzone organization sets its mechanics. We find that individual midzone bundles extend out to multiple positions across chromosomes and form multiple apparent microtubule-based connections with each other. Across the spindle's short axis, these microtubule bundles exhibit restricted, submicrometer-amplitude motions, which are weakly correlated on <10s timescales. Severing individual midzone bundles near their center does not substantially affect positions of neighboring bundles, nor the overall structural stability of the midzone. In contrast, severing multiple midzone bundles or individual bundles at their chromosome-proximal ends significantly displaces neighboring microtubule bundles. Together, these data suggest a model wherein multiple midzone connections both reinforce its structure and mechanically isolate individual bundles from local perturbations. This feature sets the robust midzone architecture to accommodate disruptions, including those which result from lagging chromosomes, and achieve stereotypic outputs, such as proper chromosome separation.


Assuntos
Anáfase , Fuso Acromático , Segregação de Cromossomos , Cinetocoros , Microtúbulos
14.
J Am Chem Soc ; 146(1): 62-67, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38134034

RESUMO

Helicases, classified into six superfamilies, are mechanoenzymes that utilize energy derived from ATP hydrolysis to remodel DNA and RNA substrates. These enzymes have key roles in diverse cellular processes, such as translation, ribosome assembly, and genome maintenance. Helicases with essential functions in certain cancer cells have been identified, and helicases expressed by many viruses are required for their pathogenicity. Therefore, helicases are important targets for chemical probes and therapeutics. However, it has been very challenging to develop chemical inhibitors for helicases, enzymes with high conformational dynamics. We envisioned that electrophilic "scout fragments", which have been used in chemical proteomic studies, could be leveraged to develop covalent inhibitors of helicases. We adopted a function-first approach, combining enzymatic assays with enantiomeric probe pairs and mass spectrometry, to develop a covalent inhibitor that selectively targets an allosteric site in SARS-CoV-2 nsp13, a superfamily-1 helicase. Further, we demonstrate that scout fragments inhibit the activity of two human superfamily-2 helicases, BLM and WRN, involved in genome maintenance. Together, our findings suggest an approach to discover covalent inhibitor starting points and druggable allosteric sites in conformationally dynamic mechanoenzymes.


Assuntos
DNA Helicases , Proteômica , Humanos , DNA Helicases/química , DNA/química
15.
Proc Natl Acad Sci U S A ; 117(31): 18459-18469, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32694211

RESUMO

Mdn1 is an essential mechanoenzyme that uses the energy from ATP hydrolysis to physically reshape and remodel, and thus mature, the 60S subunit of the ribosome. This massive (>500 kDa) protein has an N-terminal AAA (ATPase associated with diverse cellular activities) ring, which, like dynein, has six ATPase sites. The AAA ring is followed by large (>2,000 aa) linking domains that include an ∼500-aa disordered (D/E-rich) region, and a C-terminal substrate-binding MIDAS domain. Recent models suggest that intramolecular docking of the MIDAS domain onto the AAA ring is required for Mdn1 to transmit force to its ribosomal substrates, but it is not currently understood what role the linking domains play, or why tethering the MIDAS domain to the AAA ring is required for protein function. Here, we use chemical probes, single-particle electron microscopy, and native mass spectrometry to study the AAA and MIDAS domains separately or in combination. We find that Mdn1 lacking the D/E-rich and MIDAS domains retains ATP and chemical probe binding activities. Free MIDAS domain can bind to the AAA ring of this construct in a stereo-specific bimolecular interaction, and, interestingly, this binding reduces ATPase activity. Whereas intramolecular MIDAS docking appears to require a treatment with a chemical inhibitor or preribosome binding, bimolecular MIDAS docking does not. Hence, tethering the MIDAS domain to the AAA ring serves to prevent, rather than promote, MIDAS docking in the absence of inducing signals.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , ATPases Associadas a Diversas Atividades Celulares/genética , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sítios de Ligação , Domínios Proteicos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
Nat Chem Biol ; 16(8): 817-825, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32694636

RESUMO

Emergence of resistance is a major factor limiting the efficacy of molecularly targeted anticancer drugs. Understanding the specific mutations, or other genetic or cellular changes, that confer drug resistance can help in the development of therapeutic strategies with improved efficacies. Here, we outline recent progress in understanding chemotype-specific mechanisms of resistance and present chemical strategies, such as designing drugs with distinct binding modes or using proteolysis targeting chimeras, to overcome resistance. We also discuss how targeting multiple binding sites with bifunctional inhibitors or identifying collateral sensitivity profiles can be exploited to limit the emergence of resistance. Finally, we highlight how incorporating analyses of resistance early in drug development can help with the design and evaluation of therapeutics that can have long-term benefits for patients.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Antineoplásicos/química , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
17.
Biophys J ; 120(6): 1020-1030, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33340543

RESUMO

The superfamily 1 helicase nonstructural protein 13 (nsp13) is required for SARS-CoV-2 replication. The mechanism and regulation of nsp13 has not been explored at the single-molecule level. Specifically, force-dependent unwinding experiments have yet to be performed for any coronavirus helicase. Here, using optical tweezers, we find that nsp13 unwinding frequency, processivity, and velocity increase substantially when a destabilizing force is applied to the RNA substrate. These results, along with bulk assays, depict nsp13 as an intrinsically weak helicase that can be activated >50-fold by piconewton forces. Such force-dependent behavior contrasts the known behavior of other viral monomeric helicases, such as hepatitis C virus NS3, and instead draws stronger parallels to ring-shaped helicases. Our findings suggest that mechanoregulation, which may be provided by a directly bound RNA-dependent RNA polymerase, enables on-demand helicase activity on the relevant polynucleotide substrate during viral replication.


Assuntos
DNA Viral/metabolismo , Metiltransferases/metabolismo , RNA Helicases/metabolismo , RNA Viral/metabolismo , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/metabolismo , Trifosfato de Adenosina/farmacologia , Fenômenos Biomecânicos , Imagem Individual de Molécula
18.
Nat Chem Biol ; 15(5): 444-452, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30778202

RESUMO

Spastin is a microtubule-severing AAA (ATPases associated with diverse cellular activities) protein needed for cell division and intracellular vesicle transport. Currently, we lack chemical inhibitors to probe spastin function in such dynamic cellular processes. To design a chemical inhibitor of spastin, we tested selected heterocyclic scaffolds against wild-type protein and constructs with engineered mutations in the nucleotide-binding site that do not substantially disrupt ATPase activity. These data, along with computational docking, guided improvements in compound potency and selectivity and led to spastazoline, a pyrazolyl-pyrrolopyrimidine-based cell-permeable probe for spastin. These studies also identified spastazoline-resistance-conferring point mutations in spastin. Spastazoline, along with the matched inhibitor-sensitive and inhibitor-resistant cell lines we generated, were used in parallel experiments to dissect spastin-specific phenotypes in dividing cells. Together, our findings suggest how chemical probes for AAA proteins, along with inhibitor resistance-conferring mutations, can be designed and used to dissect dynamic cellular processes.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos/farmacologia , Mutação , Espastina/antagonistas & inibidores , Espastina/genética , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/genética , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Modelos Moleculares , Estrutura Molecular , Espastina/metabolismo
19.
J Am Chem Soc ; 141(14): 5602-5606, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30875216

RESUMO

The bump-hole approach is a powerful chemical biology strategy to specifically probe the functions of closely related proteins. However, for many protein families, such as the ATPases associated with diverse cellular activities (AAA), we lack structural data for inhibitor-protein complexes to design allele-specific chemical probes. Here we report the X-ray structure of a pyrazolylaminoquinazoline-based inhibitor bound to spastin, a microtubule-severing AAA protein, and characterize the residues involved in inhibitor binding. We show that an inhibitor analogue with a single-atom hydrogen-to-fluorine modification can selectively target a spastin allele with an engineered cysteine mutation in its active site. We also report an X-ray structure of the fluoro analogue bound to the spastin mutant. Furthermore, analyses of other mutant alleles suggest how the stereoelectronics of the fluorine-cysteine interaction, rather than sterics alone, contribute to the inhibitor-allele selectivity. This approach could be used to design allele-specific probes for studying cellular functions of spastin isoforms. Our data also suggest how tuning stereoelectronics can lead to specific inhibitor-allele pairs for the AAA superfamily.


Assuntos
Alelos , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Espastina/antagonistas & inibidores , Espastina/genética , Animais , Domínio Catalítico , Humanos , Modelos Moleculares
20.
Nat Chem Biol ; 18(4): 355-356, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34857957
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa