Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37514891

RESUMO

Psychology and nutritional science research has highlighted the impact of negative emotions and cognitive load on calorie consumption behaviour using subjective questionnaires. Isolated studies in other domains objectively assess cognitive load without considering its effects on eating behaviour. This study aims to explore the potential for developing an integrated eating behaviour assistant system that incorporates cognitive load factors. Two experimental sessions were conducted using custom-developed experimentation software to induce different stimuli. During these sessions, we collected 30 h of physiological, food consumption, and affective states questionnaires data to automatically detect cognitive load and analyse its effect on food choice. Utilising grid search optimisation and leave-one-subject-out cross-validation, a support vector machine model achieved a mean classification accuracy of 85.12% for the two cognitive load tasks using eight relevant features. Statistical analysis was performed on calorie consumption and questionnaire data. Furthermore, 75% of the subjects with higher negative affect significantly increased consumption of specific foods after high-cognitive-load tasks. These findings offer insights into the intricate relationship between cognitive load, affective states, and food choice, paving the way for an eating behaviour assistant system to manage food choices during cognitive load. Future research should enhance system capabilities and explore real-world applications.


Assuntos
Cognição , Comportamento Alimentar , Humanos , Preferências Alimentares/psicologia , Ingestão de Energia , Emoções
2.
Sensors (Basel) ; 22(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35009950

RESUMO

Observational studies are an important tool for determining whether the findings from controlled experiments can be transferred into scenarios that are closer to subjects' real-life circumstances. A rigorous approach to observational studies involves collecting data from different sensors to comprehensively capture the situation of the subject. However, this leads to technical difficulties especially if the sensors are from different manufacturers, as multiple data collection tools have to run simultaneously. We present SensorHub, a system that can collect data from various wearable devices from different manufacturers, such as inertial measurement units, portable electrocardiographs, portable electroencephalographs, portable photoplethysmographs, and sensors for electrodermal activity. Additionally, our tool offers the possibility to include ecological momentary assessments (EMAs) in studies. Hence, SensorHub enables multimodal sensor data collection under real-world conditions and allows direct user feedback to be collected through questionnaires, enabling studies at home. In a first study with 11 participants, we successfully used SensorHub to record multiple signals with different devices and collected additional information with the help of EMAs. In addition, we evaluated SensorHub's technical capabilities in several trials with up to 21 participants recording simultaneously using multiple sensors with sampling frequencies as high as 1000 Hz. We could show that although there is a theoretical limitation to the transmissible data rate, in practice this limitation is not an issue and data loss is rare. We conclude that with modern communication protocols and with the increasingly powerful smartphones and wearables, a system like our SensorHub establishes an interoperability framework to adequately combine consumer-grade sensing hardware which enables observational studies in real life.


Assuntos
Dispositivos Eletrônicos Vestíveis , Eletroencefalografia , Humanos , Smartphone , Inquéritos e Questionários
3.
JMIR Biomed Eng ; 6(1): e21105, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38907372

RESUMO

BACKGROUND: A majority of employees in the industrial world spend most of their working time in a seated position. Monitoring sitting postures can provide insights into the underlying causes of occupational discomforts such as low back pain. OBJECTIVE: This study focuses on the technologies and algorithms used to classify sitting postures on a chair with respect to spine and limb movements, using sensors and wearables such as inertial measurement units, pressure or piezoresistive sensors, accelerometers or gyroscopes, combined with machine learning approaches. METHODS: A total of three electronic literature databases were surveyed to identify studies classifying sitting postures in adults. Quality appraisal was performed to extract critical details and assess biases in the shortlisted papers. RESULTS: A total of 14 papers were shortlisted from 952 papers obtained after a systematic search. The majority of the studies used pressure sensors to measure sitting postures, whereas neural networks were the most frequently used approaches for classification tasks in this context. Only 2 studies were performed in a free-living environment. Most studies presented ethical and methodological shortcomings. Moreover, the findings indicate that the strategic placement of sensors can lead to better performance and lower costs. CONCLUSIONS: The included studies differed in various aspects of design and analysis. The majority of studies were rated as medium quality according to our assessment. Our study suggests that future work for posture classification can benefit from using inertial measurement unit sensors, since they make it possible to differentiate among spine movements and similar postures, considering transitional movements between postures, and using three-dimensional cameras to annotate the data for ground truth. Finally, comparing such studies is challenging, as there are no standard definitions of sitting postures that could be used for classification. In addition, this study identifies five basic sitting postures along with different combinations of limb and spine movements to help guide future research efforts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa