Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Angew Chem Int Ed Engl ; 63(14): e202319157, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339863

RESUMO

Fibroblasts are key regulators of inflammation, fibrosis, and cancer. Targeting their activation in these complex diseases has emerged as a novel strategy to restore tissue homeostasis. Here, we present a multidisciplinary lead discovery approach to identify and optimize small molecule inhibitors of pathogenic fibroblast activation. The study encompasses medicinal chemistry, molecular phenotyping assays, chemoproteomics, bulk RNA-sequencing analysis, target validation experiments, and chemical absorption, distribution, metabolism, excretion and toxicity (ADMET)/pharmacokinetic (PK)/in vivo evaluation. The parallel synthesis employed for the production of the new benzamide derivatives enabled us to a) pinpoint key structural elements of the scaffold that provide potent fibroblast-deactivating effects in cells, b) discriminate atoms or groups that favor or disfavor a desirable ADMET profile, and c) identify metabolic "hot spots". Furthermore, we report the discovery of the first-in-class inhibitor leads for hypoxia up-regulated protein 1 (HYOU1), a member of the heat shock protein 70 (HSP70) family often associated with cellular stress responses, particularly under hypoxic conditions. Targeting HYOU1 may therefore represent a potentially novel strategy to modulate fibroblast activation and treat chronic inflammatory and fibrotic disorders.


Assuntos
Fibroblastos , Inflamação , Humanos , Fibroblastos/metabolismo , Inflamação/metabolismo , Hipóxia/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo
2.
Immunity ; 39(5): 899-911, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24211183

RESUMO

Psoriasis is a common chronic inflammatory skin disease with a prevalence of about 2% in the Caucasian population. Tumor necrosis factor (TNF) plays an essential role in the pathogenesis of psoriasis, but its mechanism of action remains poorly understood. Here we report that the development of psoriasis-like skin inflammation in mice with epidermis-specific inhibition of the transcription factor NF-κB was triggered by TNF receptor 1 (TNFR1)-dependent upregulation of interleukin-24 (IL-24) and activation of signal transducer and activator of transcription 3 (STAT3) signaling in keratinocytes. IL-24 was strongly expressed in human psoriatic epidermis, and pharmacological inhibition of NF-κB increased IL-24 expression in TNF-stimulated human primary keratinocytes, suggesting that this mechanism is relevant for human psoriasis. Therefore, our results expand current views on psoriasis pathogenesis by revealing a new keratinocyte-intrinsic mechanism that links TNFR1, NF-κB, ERK, IL-24, IL-22R1, and STAT3 signaling to disease initiation.


Assuntos
Citocinas/fisiologia , Queratinócitos/patologia , Psoríase/etiologia , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Células Cultivadas , Cruzamentos Genéticos , Citocinas/biossíntese , Citocinas/genética , Modelos Animais de Doenças , Epiderme/patologia , Regulação da Expressão Gênica/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Humanos , Quinase I-kappa B/deficiência , Quinase I-kappa B/fisiologia , Interleucinas/fisiologia , Queratinócitos/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Camundongos Transgênicos , NF-kappa B/metabolismo , Psoríase/patologia , Psoríase/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Interleucina/fisiologia , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fator de Transcrição STAT3/fisiologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores
3.
J Transl Med ; 19(1): 165, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892739

RESUMO

BACKGROUND: New medications for Rheumatoid Arthritis (RA) have emerged in the last decades, including Disease Modifying Antirheumatic Drugs (DMARDs) and biologics. However, there is no known cure, since a significant proportion of patients remain or become non-responders to current therapies. The development of new mode-of-action treatment schemes involving combination therapies could prove successful for the treatment of a greater number of RA patients. METHODS: We investigated the effect of the Tyrosine Kinase inhibitors (TKIs) dasatinib and bosutinib, on the human TNF-dependent Tg197 arthritis mouse model. The inhibitors were administered either as a monotherapy or in combination with a subtherapeutic dose of anti-hTNF biologics and their therapeutic effect was assessed clinically, histopathologically as well as via gene expression analysis and was compared to that of an efficient TNF monotherapy. RESULTS: Dasatinib and, to a lesser extent, bosutinib inhibited the production of TNF and proinflammatory chemokines from arthritogenic synovial fibroblasts. Dasatinib, but not bosutinib, also ameliorated significantly and in a dose-dependent manner both the clinical and histopathological signs of Tg197 arthritis. Combination of dasatinib with a subtherapeutic dose of anti-hTNF biologic agents, resulted in a synergistic inhibitory effect abolishing all arthritis symptoms. Gene expression analysis of whole joint tissue of Tg197 mice revealed that the combination of dasatinib with a low subtherapeutic dose of Infliximab most efficiently restores the pathogenic gene expression profile to that of the healthy state compared to either treatment administered as a monotherapy. CONCLUSION: Our findings show that dasatinib exhibits a therapeutic effect in TNF-driven arthritis and can act in synergy with a subtherapeutic anti-hTNF dose to effectively treat the clinical and histopathological signs of the pathology. The combination of dasatinib and anti-hTNF exhibits a distinct mode of action in restoring the arthritogenic gene signature to that of a healthy profile. Potential clinical applications of combination therapies with kinase inhibitors and anti-TNF agents may provide an interesting alternative to high-dose anti-hTNF monotherapy and increase the number of patients responding to treatment.


Assuntos
Antirreumáticos , Artrite Reumatoide , Dasatinibe , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Animais , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Dasatinibe/uso terapêutico , Humanos , Infliximab/uso terapêutico , Camundongos
4.
PLoS Comput Biol ; 15(5): e1006933, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31071076

RESUMO

Anti-TNF agents have been in the first line of treatment of various inflammatory diseases such as Rheumatoid Arthritis and Crohn's Disease, with a number of different biologics being currently in use. A detailed analysis of their effect at transcriptome level has nevertheless been lacking. We herein present a concise analysis of an extended transcriptomics profiling of four different anti-TNF biologics upon treatment of the established hTNFTg (Tg197) mouse model of spontaneous inflammatory polyarthritis. We implement a series of computational analyses that include clustering of differentially expressed genes, functional analysis and random forest classification. Taking advantage of our detailed sample structure, we devise metrics of treatment efficiency that take into account changes in gene expression compared to both the healthy and the diseased state. Our results suggest considerable variability in the capacity of different biologics to modulate gene expression that can be attributed to treatment-specific functional pathways and differential preferences to restore over- or under-expressed genes. Early intervention appears to manage inflammation in a more efficient way but is accompanied by increased effects on a number of genes that are seemingly unrelated to the disease. Administration at an early stage is also lacking in capacity to restore healthy expression levels of under-expressed genes. We record quantifiable differences among anti-TNF biologics in their efficiency to modulate over-expressed genes related to immune and inflammatory pathways. More importantly, we find a subset of the tested substances to have quantitative advantages in addressing deregulation of under-expressed genes involved in pathways related to known RA comorbidities. Our study shows the potential of transcriptomic analyses to identify comprehensive and distinct treatment-specific gene signatures combining disease-related and unrelated genes and proposes a generalized framework for the assessment of drug efficacy, the search of biosimilars and the evaluation of the efficacy of TNF small molecule inhibitors.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Artrite/genética , Perfilação da Expressão Gênica/métodos , Adalimumab/farmacologia , Animais , Artrite/tratamento farmacológico , Medicamentos Biossimilares , Certolizumab Pegol/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/imunologia , Infliximab/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transcriptoma/genética , Resultado do Tratamento , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Ann Rheum Dis ; 77(6): 926-934, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29475857

RESUMO

OBJECTIVES: Patients with rheumatoid arthritis and spondyloarthritisshow higher mortality rates, mainly caused by cardiac comorbidities. The TghuTNF (Tg197) arthritis model develops tumour necrosis factor (TNF)-driven and mesenchymalsynovial fibroblast (SF)-dependent polyarthritis. Here, we investigate whether this model develops, similarly to human patients, comorbid heart pathology and explore cellular and molecular mechanisms linking arthritis to cardiac comorbidities. METHODS: Histopathological analysis and echocardiographic evaluation of cardiac function were performed in the Tg197 model. Valve interstitial cells (VICs) were targeted by mice carrying the ColVI-Cretransgene. Tg197 ColVI-Cre Tnfr1fl/fl and Tg197 ColVI-Cre Tnfr1cneo/cneo mutant mice were used to explore the role of mesenchymal TNF signalling in the development of heart valve disease. Pathogenic VICs and SFs were further analysed by comparative RNA-sequencing analysis. RESULTS: Tg197 mice develop left-sided heart valve disease, characterised by valvular fibrosis with minimal signs of inflammation. Thickened valve areas consist almost entirely of hyperproliferative ColVI-expressing mesenchymal VICs. Development of pathology results in valve stenosis and left ventricular dysfunction, accompanied by arrhythmic episodes and, occasionally, valvular regurgitation. TNF dependency of the pathology was indicated by disease modulation following pharmacological inhibition or mesenchymal-specific genetic ablation or activation of TNF/TNFR1 signalling. Tg197-derived VICs exhibited an activated phenotype ex vivo, reminiscent of the activated pathogenic phenotype of Tg197-derived SFs. Significant functional similarities between SFs and VICs were revealed by RNA-seq analysis, demonstrating common cellular mechanisms underlying TNF-mediated arthritides and cardiac comorbidities. CONCLUSIONS: Comorbidheart valve disease and chronic polyarthritis are efficiently modelled in the Tg197 arthritis model and share common TNF/TNFR1-mediated, mesenchymal cell-specific aetiopathogenic mechanisms.


Assuntos
Artrite Experimental/imunologia , Doenças das Valvas Cardíacas/imunologia , Células-Tronco Mesenquimais/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Valva Aórtica/patologia , Doença Crônica , Feminino , Fibrose , Doenças das Valvas Cardíacas/complicações , Doenças das Valvas Cardíacas/patologia , Masculino , Camundongos Mutantes , Valva Mitral/patologia , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Disfunção Ventricular Esquerda/etiologia
6.
Proc Natl Acad Sci U S A ; 111(43): E4658-67, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25316791

RESUMO

Tumor progression locus-2 (Tpl2) kinase is a major inflammatory mediator in immune cell types recently found to be genetically associated with inflammatory bowel diseases (IBDs). Here we show that Tpl2 may exert a dominant homeostatic rather than inflammatory function in the intestine mediated specifically by subepithelial intestinal myofibroblasts (IMFs). Mice with complete or IMF-specific Tpl2 ablation are highly susceptible to epithelial injury-induced colitis showing impaired compensatory proliferation in crypts and extensive ulcerations without significant changes in inflammatory responses. Following epithelial injury, IMFs sense innate or inflammatory signals and activate, via Tpl2, the cyclooxygenase-2 (Cox-2)-prostaglandin E2 (PGE2) pathway, which we show here to be essential for the epithelial homeostatic response. Exogenous PGE2 administration rescues mice with complete or IMF-specific Tpl2 ablation from defects in crypt function and susceptibility to colitis. We also show that Tpl2 expression is decreased in IMFs isolated from the inflamed ileum of IBD patients indicating that Tpl2 function in IMFs may be highly relevant to human disease. The IMF-mediated mechanism we propose also involves the IBD-associated genes IL1R1, MAPK1, and the PGE2 receptor-encoding PTGER4. Our results establish a previously unidentified myofibroblast-specific innate pathway that regulates intestinal homeostasis and may underlie IBD susceptibility in humans.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Epitélio/metabolismo , Homeostase , Intestinos/patologia , MAP Quinase Quinase Quinases/metabolismo , Miofibroblastos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Linhagem da Célula , Proliferação de Células/efeitos dos fármacos , Colite/enzimologia , Colite/imunologia , Colite/patologia , Sulfato de Dextrana , Dinoprostona/administração & dosagem , Dinoprostona/farmacologia , Suscetibilidade a Doenças , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Epitélio/patologia , Homeostase/efeitos dos fármacos , Humanos , Imunidade Inata/efeitos dos fármacos , Inflamação/patologia , Doenças Inflamatórias Intestinais/enzimologia , Doenças Inflamatórias Intestinais/patologia , MAP Quinase Quinase Quinases/deficiência , Camundongos Endogâmicos C57BL , Modelos Biológicos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/enzimologia , Miofibroblastos/patologia , Fenótipo , Proteínas Proto-Oncogênicas/deficiência , Transdução de Sinais/efeitos dos fármacos
7.
J Proteome Res ; 15(12): 4579-4590, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27704840

RESUMO

Rheumatoid arthritis is a progressive, highly debilitating disease where early diagnosis, enabling rapid clinical intervention, would provide obvious benefits to patients, healthcare systems, and society. Novel biomarkers that enable noninvasive early diagnosis of the onset and progression of the disease provide one route to achieving this goal. Here a metabolic profiling method has been applied to investigate disease development in the Tg197 arthritis mouse model. Hind limb extract profiling demonstrated clear differences in metabolic phenotypes between control (wild type) and Tg197 transgenic mice and highlighted raised concentrations of itaconic acid as a potential marker of the disease. These changes in itaconic acid concentrations were moderated or indeed reversed when the Tg197 mice were treated with the anti-hTNF biologic infliximab (10 mg/kg twice weekly for 6 weeks). Further in vitro studies on synovial fibroblasts obtained from healthy wild-type, arthritic Tg197, and infliximab-treated Tg197 transgenic mice confirmed the association of itaconic acid with rheumatoid arthritis and disease-moderating drug effects. Preliminary indications of the potential value of itaconic acid as a translational biomarker were obtained when studies on K4IM human fibroblasts treated with hTNF showed an increase in the concentrations of this metabolite.


Assuntos
Artrite Reumatoide/diagnóstico , Metabolômica/métodos , Succinatos/análise , Animais , Biomarcadores/análise , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Succinatos/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia
8.
Arthritis Rheumatol ; 76(7): 1085-1095, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38361183

RESUMO

OBJECTIVE: Interleukin-23 (IL-23) is a crucial cytokine implicated in chronic inflammation and autoimmunity, associated with various diseases such as psoriasis, psoriatic arthritis, and systemic lupus erythematosus (SLE). This study aimed to create and characterize a transgenic mouse model overexpressing human IL-23A (TghIL-23A), providing a valuable tool for investigating the pathogenic role of human IL-23A and evaluating the efficacy of anti-human IL-23A therapeutics. METHODS: TghIL-23A mice were generated via microinjection of CBA × C57BL/6 zygotes with a fragment of the human IL23A gene, flanked by its 5'-regulatory sequences and the 3' untranslated region of human ß-globin. The TghIL-23A pathology was assessed through hematologic and biochemic analyses, cytokine and antinuclear antibody detection, and histopathologic examination of skin and renal tissues. The response to the anti-human IL-23A therapeutic agent guselkumab was evaluated in groups of eight mixed-sex mice receiving subcutaneous treatment twice weekly for 10 weeks using clinical, biomarker, and histopathologic readouts. RESULTS: TghIL-23A mice exhibited interactions between human IL-23A and mouse IL-23/IL-12p40 and developed a chronic multiorgan autoimmune disease marked by proteinuria, anti-double-stranded DNA antibodies, severe inflammatory lesions in the skin, and milder phenotypes in the kidneys and lungs. The TghIL-23A pathologic features exhibited significant similarities to those observed in human patients with SLE, and they were reversed following guselkumab treatment. CONCLUSION: We have generated and characterized a novel genetic mouse model of SLE, providing proof-of-concept for the etiopathogenic role of human IL-23A. This new model has a normal life span and integrates several characteristics of the human disease's complexity and chronicity, making it an attractive preclinical tool for studying IL-23-dependent pathogenic mechanisms and assessing the efficacy of anti-human IL-23A or modeled disease-related therapeutics.


Assuntos
Modelos Animais de Doenças , Subunidade p19 da Interleucina-23 , Lúpus Eritematoso Sistêmico , Camundongos Transgênicos , Animais , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Camundongos , Subunidade p19 da Interleucina-23/genética , Subunidade p19 da Interleucina-23/imunologia , Humanos , Feminino , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Camundongos Endogâmicos C57BL , Masculino , Anticorpos Antinucleares/imunologia , Camundongos Endogâmicos CBA
9.
Mech Ageing Dev ; 214: 111856, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558168

RESUMO

We had shown that administration of the senolytic Dasatinib abolishes arthritis in the human TNF transgenic mouse model of chronic destructive arthritis when given in combination with a sub-therapeutic dose of the anti-TNF mAb Infliximab (1 mg/kg). Herein, we found that while the number of senescent chondrocytes (GL13+/Ki67-), assessed according to guideline algorithmic approaches, was not affected by either Dasatinib or sub-therapeutic Infliximab monotherapies, their combination reduced senescent chondrocytes by 50 %, which was comparable to levels observed with therapeutic Infliximab monotherapy (10 mg/kg). This combination therapy also reduced the expression of multiple factors of senescence-associated secretory phenotype in arthritic joints. Studies to elucidate the interplay of inflammation and senescence may help in optimizing treatment strategies also for age-related pathologies characterized by chronic low-grade joint inflammation.


Assuntos
Artrite , Senescência Celular , Humanos , Camundongos , Animais , Dasatinibe/farmacologia , Infliximab/farmacologia , Inibidores do Fator de Necrose Tumoral/farmacologia , Inflamação , Camundongos Transgênicos
10.
Cancers (Basel) ; 15(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37568820

RESUMO

Receptor activator of nuclear factor-κB ligand (RANKL) is critically involved in mammary gland pathophysiology, while its pharmaceutical inhibition is being currently investigated in breast cancer. Herein, we investigated whether the overexpression of human RANKL in transgenic mice affects hormone-induced mammary carcinogenesis, and evaluated the efficacy of anti-RANKL treatments, such as OPG-Fc targeting both human and mouse RANKL or Denosumab against human RANKL. We established novel MPA/DMBA-driven mammary carcinogenesis models in TgRANKL mice that express both human and mouse RANKL, as well as in humanized humTgRANKL mice expressing only human RANKL, and compared them to MPA/DMBA-treated wild-type (WT) mice. Our results show that TgRANKL and WT mice have similar levels of susceptibility to mammary carcinogenesis, while OPG-Fc treatment restored mammary ductal density, and prevented ductal branching and the formation of neoplastic foci in both genotypes. humTgRANKL mice also developed MPA/DMBA-induced tumors with similar incidence and burden to those of WT and TgRANKL mice. The prophylactic treatment of humTgRANKL mice with Denosumab significantly prevented the rate of appearance of mammary tumors from 86.7% to 15.4% and the early stages of carcinogenesis, whereas therapeutic treatment did not lead to any significant attenuation of tumor incidence or tumor burden compared to control mice, suggesting the importance of RANKL primarily in the initial stages of tumorigenesis. Overall, we provide unique genetic tools for investigating the involvement of RANKL in breast carcinogenesis, and allow the preclinical evaluation of novel therapeutics that target hormone-related breast cancers.

11.
JCI Insight ; 8(9)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37014697

RESUMO

Synovial fibroblasts (SFs) are key pathogenic drivers in rheumatoid arthritis (RA). Their in vivo activation by TNF is sufficient to orchestrate full arthritic pathogenesis in animal models, and TNF blockade proved efficacious for a high percentage of patients with RA albeit coinducing rare but serious side effects. Aiming to find new potent therapeutics, we applied the L1000CDS2 search engine, to repurpose drugs that could reverse the pathogenic expression signature of arthritogenic human TNF-transgenic (hTNFtg) SFs. We identified a neuroleptic drug, namely amisulpride, which reduced SFs' inflammatory potential while decreasing the clinical score of hTNFtg polyarthritis. Notably, we found that amisulpride function was neither through its known targets dopamine receptors D2 and D3 and serotonin receptor 7 nor through TNF-TNF receptor I binding inhibition. Through a click chemistry approach, potentially novel targets of amisulpride were identified, which were further validated to repress hTNFtg SFs' inflammatory potential ex vivo (Ascc3 and Sec62), while phosphoproteomics analysis revealed that treatment altered important fibroblast activation pathways, such as adhesion. Thus, amisulpride could prove beneficial to patients experiencing RA and the often-accompanying comorbid dysthymia, reducing SF pathogenicity along with its antidepressive activity, serving further as a "lead" compound for the development of novel therapeutics against fibroblast activation.


Assuntos
Antipsicóticos , Artrite Reumatoide , Animais , Humanos , Membrana Sinovial/metabolismo , Antipsicóticos/farmacologia , Amissulprida/farmacologia , Reposicionamento de Medicamentos , Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , DNA Helicases/metabolismo
12.
Ann Rheum Dis ; 71(10): 1716-23, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22562984

RESUMO

OBJECTIVE: To identify novel microRNA (miR) associations in synovial fibroblasts (SF), by performing miR expression profiling on cells isolated from the human tumour necrosis factor (TNF) transgenic mouse model (TghuTNF, Tg197) and patients biopsies. METHODS: miR expression in SF from TghuTNF and wild-type (WT) control mice were determined by miR deep sequencing (miR-seq) and the arthritic profile was established by pairwise comparisons. Quantitative PCR analysis was utilised for profile validation, miR and gene quantitation in patient SF. Dysregulated miR target genes and pathways were predicted via bioinformatic algorithms and validated using gain-of-function coupled with reporter assay experiments. RESULTS: miR-seq demonstrated that TghuTNF-SF exhibit a distinct pathogenic profile with 22 significantly upregulated and 30 significantly downregulated miR. Validation assays confirmed the dysregulation of miR-223, miR-146a and miR-155 previously associated with human rheumatoid arthritis (RA) pathology, as well as that of miR-221/222 and miR-323-3p. Notably, the latter were also found significantly upregulated in patient RA SF, suggesting for the first time their association with RA pathology. Bioinformatic analysis suggested Wnt/cadherin signalling as a putative pathway target. miR-323-3p overexpression was shown to enhance Wnt pathway activation and decrease the levels of its predicted target ß-transducin repeat containing, an inhibitor of ß-catenin. CONCLUSIONS: Using miR-seq-based profiling in SF from the TghuTNF mouse model and validations in RA patient biopsies, the authors identified miR-221/222 and miR-323-3p as novel dysregulated miR in RA SF. Furthermore, the authors show that miR-323-3p is a positive regulator of WNT/cadherin signalling in RA SF suggesting its potential pathogenic involvement and future use as a therapeutic target in RA.


Assuntos
Artrite Reumatoide/genética , MicroRNAs/genética , Transcriptoma , Algoritmos , Animais , Biologia Computacional , Modelos Animais de Doenças , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
13.
Sci Rep ; 12(1): 18189, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307458

RESUMO

Children with chronic inflammation are often treated with glucocorticoids (GCs) and many of them experience growth retardation. It is poorly understood how GCs interact with inflammatory cytokines causing growth failure as earlier experimental studies have been performed in healthy animals. To address this gap of knowledge, we used a transgenic mouse model where human TNF is overexpressed (huTNFTg) leading to chronic polyarthritis starting from the first week of age. Our results showed that femur bone length and growth plate height were significantly decreased in huTNFTg mice compared to wild type animals. In the growth plates of huTNFTg mice, increased apoptosis, suppressed Indian hedgehog, decreased hypertrophy, and disorganized chondrocyte columns were observed. Interestingly, the GC dexamethasone further impaired bone growth, accelerated chondrocyte apoptosis and reduced the number of chondrocyte columns in huTNFTg mice. We conclude that TNF and dexamethasone separately suppress chondrogenesis and bone growth when studied in an animal model of chronic inflammation. Our data give a possible mechanistic explanation to the commonly observed growth retardation in children with chronic inflammatory diseases treated with GCs.


Assuntos
Condrogênese , Proteínas Hedgehog , Criança , Camundongos , Humanos , Animais , Proteínas Hedgehog/genética , Desenvolvimento Ósseo , Lâmina de Crescimento , Condrócitos , Glucocorticoides/farmacologia , Camundongos Transgênicos , Inflamação , Dexametasona/farmacologia , Transtornos do Crescimento
14.
Cardiovasc Res ; 118(1): 254-266, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33483748

RESUMO

AIMS: Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting joints and blood vessels. Despite low levels of low-density lipoprotein cholesterol (LDL-C), RA patients exhibit endothelial dysfunction and are at increased risk of death from cardiovascular complications, but the molecular mechanism of action is unknown. We aimed in the present study to identify the molecular mechanism of endothelial dysfunction in a mouse model of RA and in patients with RA. METHODS AND RESULTS: Endothelium-dependent relaxations to acetylcholine were reduced in aortae of two tumour necrosis factor alpha (TNFα) transgenic mouse lines with either mild (Tg3647) or severe (Tg197) forms of RA in a time- and severity-dependent fashion as assessed by organ chamber myograph. In Tg197, TNFα plasma levels were associated with severe endothelial dysfunction. LOX-1 receptor was markedly up-regulated leading to increased vascular oxLDL uptake and NFκB-mediated enhanced Arg2 expression via direct binding to its promoter resulting in reduced NO bioavailability and vascular cGMP levels as shown by ELISA and chromatin immunoprecipitation. Anti-TNFα treatment with infliximab normalized endothelial function together with LOX-1 and Arg2 serum levels in mice. In RA patients, soluble LOX-1 serum levels were also markedly increased and closely related to serum levels of C-reactive protein. Similarly, ARG2 serum levels were increased. Similarly, anti-TNFα treatment restored LOX-1 and ARG2 serum levels in RA patients. CONCLUSIONS: Increased TNFα levels not only contribute to RA, but also to endothelial dysfunction by increasing vascular oxLDL content and activation of the LOX-1/NFκB/Arg2 pathway leading to reduced NO bioavailability and decreased cGMP levels. Anti-TNFα treatment improved both articular symptoms and endothelial function by reducing LOX-1, vascular oxLDL, and Arg2 levels.


Assuntos
Aorta Torácica/efeitos dos fármacos , Arginase/metabolismo , Artrite Reumatoide/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Receptores Depuradores Classe E/metabolismo , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Vasodilatação/efeitos dos fármacos , Adulto , Animais , Animais Geneticamente Modificados , Aorta Torácica/enzimologia , Aorta Torácica/imunologia , Aorta Torácica/fisiopatologia , Arginase/genética , Artrite Reumatoide/enzimologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/fisiopatologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Células Endoteliais/imunologia , Endotélio Vascular/enzimologia , Endotélio Vascular/imunologia , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Receptores Depuradores Classe E/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética
15.
Arthritis Res Ther ; 22(1): 232, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023659

RESUMO

BACKGROUND: The transmembrane-TNF transgenic mouse, TgA86, has been shown to develop spontaneously peripheral arthritis with signs of axial involvement. To assess similarity to human spondyloarthritis, we performed detailed characterization of the axial, peripheral, and comorbid pathologies of this model. METHODS: TgA86 bone pathologies were assessed at different ages using CT imaging of the spine, tail vertebrae, and hind limbs and characterized in detail by histopathological and immunohistochemical analysis. Cardiac function was examined by echocardiography and electrocardiography and bone structural parameters by µCT analysis. The response of TgA86 mice to either early or late anti-TNF treatment was evaluated clinically, histopathologically, and by µCT analysis. RESULTS: TgA86 mice developed with 100% penetrance spontaneous axial and peripheral pathology which progressed with time and manifested as reduced body weight and body length, kyphosis, tail bendings, as well as swollen and distorted hind joints. Whole-body CT analysis at advanced ages revealed bone erosions of sacral and caudal vertebrae as well as of sacroiliac joints and hind limbs and, also, new ectopic bone formation and eventually vertebral fusion. The pathology of these mice highly resembled that of SpA patients, as it evolved through an early inflammatory phase, evident as enthesitis and synovitis in the affected joints, characterized by mesenchymal cell accumulation, and neutrophilic infiltration. Subsequently, regression of inflammation was accompanied by ectopic bone formation, leading to ankylosis. In addition, both systemic bone loss and comorbid heart valve pathology were evident. Importantly, early anti-TNF treatment, similar to clinical treatment protocols, significantly reduced the inflammatory phase of both the axial and peripheral pathology of TgA86 mice. CONCLUSIONS: The TgA86 mice develop a spontaneous peripheral and axial biphasic pathology accompanied by comorbid heart valvular dysfunction and osteoporosis, overall reproducing the progression of pathognomonic features of human spondyloarthritis. Therefore, the TgA86 mouse represents a valuable model for deciphering the role of transmembrane TNF in the pathogenic mechanisms of spondyloarthritis and for assessing the efficacy of human therapeutics targeting different phases of the disease.


Assuntos
Osteogênese , Espondilartrite , Animais , Humanos , Inflamação , Imageamento por Ressonância Magnética , Camundongos , Articulação Sacroilíaca , Espondilartrite/diagnóstico por imagem , Inibidores do Fator de Necrose Tumoral
16.
JCI Insight ; 3(7)2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29618659

RESUMO

Mesenchymal TNF signaling is etiopathogenic for inflammatory diseases such as rheumatoid arthritis and spondyloarthritis (SpA). The role of Tnfr1 in arthritis has been documented; however, Tnfr2 functions are unknown. Here, we investigate the mesenchymal-specific role of Tnfr2 in the TnfΔARE mouse model of SpA in arthritis and heart valve stenosis comorbidity by cell-specific, Col6a1-cre-driven gene targeting. We find that TNF/Tnfr2 signaling in resident synovial fibroblasts (SFs) and valvular interstitial cells (VICs) is detrimental for both pathologies, pointing to common cellular mechanisms. In contrast, systemic Tnfr2 provides protective signaling, since its complete deletion leads to severe deterioration of both pathologies. SFs and VICs lacking Tnfr2 fail to acquire pathogenic activated phenotypes and display increased expression of antiinflammatory cytokines associated with decreased Akt signaling. Comparative RNA sequencing experiments showed that the majority of the deregulated pathways in TnfΔARE mesenchymal-origin SFs and VICs, including proliferation, inflammation, migration, and disease-specific genes, are regulated by Tnfr2; thus, in its absence, they are maintained in a quiescent nonpathogenic state. Our data indicate a pleiotropy of Tnfr2 functions, with mesenchymal Tnfr2 driving cell activation and arthritis/valve stenosis pathogenesis only in the presence of systemic Tnfr2, whereas nonmesenchymal Tnfr2 overcomes this function, providing protective signals and, thus, containing both pathologies.


Assuntos
Estenose da Valva Aórtica/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Transdução de Sinais/imunologia , Espondilartrite/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Estenose da Valva Aórtica/complicações , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibroblastos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Espondilartrite/complicações , Espondilartrite/genética , Espondilartrite/patologia , Membrana Sinovial/citologia , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
17.
Sci Rep ; 7(1): 2397, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28546545

RESUMO

The human growth hormone (hGH) minigene used for transgene stabilization in mice has been recently identified to be locally expressed in the tissues where transgenes are active and associated with phenotypic alterations. Here we extend these findings by analyzing the effect of the hGH minigene in TgC6hp55 transgenic mice which express the human TNFR1 under the control of the mesenchymal cell-specific CollagenVI promoter. These mice displayed a fully penetrant phenotype characterized by growth enhancement accompanied by perturbations in metabolic, skeletal, histological and other physiological parameters. Notably, this phenotype was independent of TNF-TNFR1 signaling since the genetic ablation of either Tnf or Tradd did not rescue the phenotype. Further analyses showed that the hGH minigene was expressed in several tissues, also leading to increased hGH protein levels in the serum. Pharmacological blockade of GH signaling prevented the development of the phenotype. Our results indicate that the unplanned expression of the hGH minigene in CollagenVI expressing mesenchymal cells can lead through local and/or systemic mechanisms to enhanced somatic growth followed by a plethora of primary and/or secondary effects such as hyperphagia, hypermetabolism, disturbed glucose homeostasis, altered hematological parameters, increased bone formation and lipid accumulation in metabolically critical tissues.


Assuntos
Expressão Gênica , Hormônio do Crescimento Humano/genética , Fenótipo , Transgenes , Animais , Colágeno Tipo VI/genética , Feminino , Regulação da Expressão Gênica , Glucose/metabolismo , Hormônio do Crescimento Humano/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
18.
Mech Ageing Dev ; 160: 34-40, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27443148

RESUMO

Human life expectancy has increased dramatically in the last century and as a result also the prevalence of a variety of age-related diseases and syndromes. One such syndrome is frailty, which is defined as a combination of organ dysfunctions leading to increased vulnerability to adverse health outcomes. In humans, frailty is associated with various biomarkers of ageing and predicts relevant outcomes such as responses to therapies and progression of health status and mortality. Moreover, it is relatively easy to assess. To foster translation of mechanistic understanding of the ageing process and, importantly, of interventions that may extend healthy lifespan, frailty scales have been reverse translated into mice in recent years. We will review these approaches with a view to identify what is known and what is not known at present about their validity, reproducibility and reliability with a focus on the potential for further improvement.


Assuntos
Envelhecimento , Fragilidade , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Modelos Animais de Doenças , Fragilidade/genética , Fragilidade/metabolismo , Fragilidade/patologia , Humanos , Camundongos
19.
J Control Release ; 242: 16-24, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27639683

RESUMO

We have developed a composite hydrogel for improved topical delivery of the poorly soluble drug Tacrolimus (TAC) to psoriasis lesions. TAC is efficiently solubilized in methoxy poly- (ethylene glycol) hexyl substituted poly-(lactic acid) (mPEGhexPLA) based nanocarriers. For convenient and patient-friendly topical administration, TAC loaded polymeric nanocarriers were incorporated in a Carbopol® based hydrogel, to yield a composite hydrogel formulation (TAC composite hydrogel). TAC composite hydrogel was designed to have superior pharmaceutical formulation properties, delivery efficiency and local bioavailability, compared to currently available paraffin-based TAC ointments. Composite hydrogel formulations had good local tolerance and showed no signs of immediate toxicity after repeated topical administration in healthy mice. Skin delivery of TAC composite hydrogel in an imiquimod-induced psoriasis mouse model was found to be twice as high as for the commercial formulation Protopic™, used as benchmark. TAC composite hydrogel showed significant improvement in the in vivo and histopathological features of the imiquimod-induced psoriasis model.


Assuntos
Sistemas de Liberação de Medicamentos , Imunossupressores/administração & dosagem , Psoríase/tratamento farmacológico , Tacrolimo/administração & dosagem , Administração Cutânea , Aminoquinolinas , Animais , Disponibilidade Biológica , Química Farmacêutica , Modelos Animais de Doenças , Portadores de Fármacos/química , Hidrogéis , Imiquimode , Imunossupressores/farmacocinética , Imunossupressores/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Polímeros/química , Pele/metabolismo , Absorção Cutânea , Solubilidade , Tacrolimo/farmacocinética , Tacrolimo/farmacologia
20.
J Clin Invest ; 123(6): 2590-603, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23676465

RESUMO

TNF has remarkable antitumor activities; however, therapeutic applications have not been possible because of the systemic and lethal proinflammatory effects induced by TNF. Both the antitumor and inflammatory effects of TNF are mediated by the TNF receptor p55 (p55TNFR) (encoded by the Tnfrsf1a gene). The antitumor effect stems from an induction of cell death in tumor endothelium, but the cell type that initiates the lethal inflammatory cascade has been unclear. Using conditional Tnfrsf1a knockout or reactivation mice, we found that the expression level of p55TNFR in intestinal epithelial cells (IECs) is a crucial determinant in TNF-induced lethal inflammation. Remarkably, tumor endothelium and IECs exhibited differential sensitivities to TNF when p55TNFR levels were reduced. Tumor-bearing Tnfrsf1a⁺⁺/⁻ or IEC-specific p55TNFR-deficient mice showed resistance to TNF-induced lethality, while the tumor endothelium remained fully responsive to TNF-induced apoptosis and tumors regressed. We demonstrate proof of principle for clinical application of this approach using neutralizing anti-human p55TNFR antibodies in human TNFRSF1A knockin mice. Our results uncover an important cellular basis of TNF toxicity and reveal that IEC-specific or systemic reduction of p55TNFR mitigates TNF toxicity without loss of antitumor efficacy.


Assuntos
Antineoplásicos/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Apoptose , Citocinas/genética , Citocinas/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Endotélio/patologia , Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Inflamação/induzido quimicamente , Interferon gama/fisiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante de Neoplasias , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/uso terapêutico , Fator de Necrose Tumoral alfa/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa