Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(10): 4457-4468, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35138840

RESUMO

Tuning metal oxidation states in metal-organic framework (MOF) nodes by switching between two discrete linker photoisomers via an external stimulus was probed for the first time. On the examples of three novel photochromic copper-based frameworks, we demonstrated the capability of switching between +2 and +1 oxidation states, on demand. In addition to crystallographic methods used for material characterization, the role of the photochromic moieties for tuning the oxidation state was probed via conductivity measurements, cyclic voltammetry, and electron paramagnetic resonance, X-ray photoelectron, and diffuse reflectance spectroscopies. We confirmed the reversible photoswitching activity including photoisomerization rate determination of spiropyran- and diarylethene-containing linkers in extended frameworks, resulting in changes in metal oxidation states as a function of alternating excitation wavelengths. To elucidate the switching process between two states, the photoisomerization quantum yield of photochromic MOFs was determined for the first time. Overall, the introduced noninvasive concept of metal oxidation state modulation on the examples of stimuli-responsive MOFs foreshadows a new pathway for alternation of material properties toward targeted applications.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Metais , Oxirredução
2.
Phys Chem Chem Phys ; 24(31): 18729-18737, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35899998

RESUMO

Herein, we report structural, computational, and conductivity studies on urea-directed self-assembled iodinated triphenylamine (TPA) derivatives. Despite numerous reports of conductive TPAs, the challenges of correlating their solid-state assembly with charge transport properties hinder the efficient design of new materials. In this work, we compare the assembled structures of a methylene urea bridged dimer of di-iodo TPA (1) and the corresponding methylene urea di-iodo TPA monomer (2) with a di-iodo mono aldehyde (3) control. These modifications lead to needle shaped crystals for 1 and 2 that are organized by urea hydrogen bonding, π⋯π stacking, I⋯I, and I⋯π interactions as determined by SC-XRD, Hirshfeld surface analysis, and X-ray photoelectron spectroscopy (XPS). The long needle shaped crystals were robust enough to measure the conductivity by two contact probe methods with 2 exhibiting higher conductivity values (∼6 × 10-7 S cm-1) compared to 1 (1.6 × 10-8 S cm-1). Upon UV-irradiation, 1 formed low quantities of persistent radicals with the simple methylurea 2 displaying less radical formation. The electronic properties of 1 were further investigated using valence band XPS, which revealed a significant shift in the valence band upon UV irradiation (0.5-1.9 eV), indicating the potential of these materials as dopant free p-type hole transporters. The electronic structure calculations suggest that the close packing of TPA promotes their electronic coupling and allows effective charge carrier transport. Our results show that ionic additives significantly improve the conductivity up to ∼2.0 × 10-6 S cm-1 in thin films, enabling their implementation in functional devices such as perovskite or solid-state dye sensitized solar cells.

3.
Angew Chem Int Ed Engl ; 61(28): e202205632, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35470950

RESUMO

Carbon-supported nitrogen-coordinated single-metal site catalysts (i.e., M-N-C, M: Fe, Co, or Ni) are active for the electrochemical CO2 reduction reaction (CO2 RR) to CO. Further improving their intrinsic activity and selectivity by tuning their N-M bond structures and coordination is limited. Herein, we expand the coordination environments of M-N-C catalysts by designing dual-metal active sites. The Ni-Fe catalyst exhibited the most efficient CO2RR activity and promising stability compared to other combinations. Advanced structural characterization and theoretical prediction suggest that the most active N-coordinated dual-metal site configurations are 2N-bridged (Fe-Ni)N6 , in which FeN4 and NiN4 moieties are shared with two N atoms. Two metals (i.e., Fe and Ni) in the dual-metal site likely generate a synergy to enable more optimal *COOH adsorption and *CO desorption than single-metal sites (FeN4 or NiN4 ) with improved intrinsic catalytic activity and selectivity.

4.
Angew Chem Int Ed Engl ; 61(12): e202113909, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-34845811

RESUMO

The efficient delivery of reactive and toxic gaseous reagents to organic reactions was studied using metal-organic frameworks (MOFs). The simultaneous cargo vehicle and catalytic capabilities of several MOFs were probed for the first time using the examples of aromatization, aminocarbonylation, and carbonylative Suzuki-Miyaura coupling reactions. These reactions highlight that MOFs can serve a dual role as a gas cargo vehicle and a catalyst, leading to product formation with yields similar to reactions employing pure gases. Furthermore, the MOFs can be recycled without sacrificing product yield, while simultaneously maintaining crystallinity. The reported findings were supported crystallographically and spectroscopically (e.g., diffuse reflectance infrared Fourier transform spectroscopy), foreshadowing a pathway for the development of multifunctional MOF-based reagent-catalyst cargo vessels for reactive gas reagents as an attractive alternative to the use of toxic pure gases or gas generators.

5.
Angew Chem Int Ed Engl ; 60(17): 9516-9526, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33492674

RESUMO

We elucidate the structural evolution of CoN4 sites during thermal activation by developing a zeolitic imidazolate framework (ZIF)-8-derived carbon host as an ideal model for Co2+ ion adsorption. Subsequent in situ X-ray absorption spectroscopy analysis can dynamically track the conversion from inactive Co-OH and Co-O species into active CoN4 sites. The critical transition occurs at 700 °C and becomes optimal at 900 °C, generating the highest intrinsic activity and four-electron selectivity for the oxygen reduction reaction (ORR). DFT calculations elucidate that the ORR is kinetically favored by the thermal-induced compressive strain of Co-N bonds in CoN4 active sites formed at 900 °C. Further, we developed a two-step (i.e., Co ion doping and adsorption) Co-N-C catalyst with increased CoN4 site density and optimized porosity for mass transport, and demonstrated its outstanding fuel cell performance and durability.

6.
Angew Chem Int Ed Engl ; 60(2): 1022-1032, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33002266

RESUMO

Atomically dispersed FeN4 active sites have exhibited exceptional catalytic activity and selectivity for the electrochemical CO2 reduction reaction (CO2RR) to CO. However, the understanding behind the intrinsic and morphological factors contributing to the catalytic properties of FeN4 sites is still lacking. By using a Fe-N-C model catalyst derived from the ZIF-8, we deconvoluted three key morphological and structural elements of FeN4 sites, including particle sizes of catalysts, Fe content, and Fe-N bond structures. Their respective impacts on the CO2RR were comprehensively elucidated. Engineering the particle size and Fe doping is critical to control extrinsic morphological factors of FeN4 sites for optimal porosity, electrochemically active surface areas, and the graphitization of the carbon support. In contrast, the intrinsic activity of FeN4 sites was only tunable by varying thermal activation temperatures during the formation of FeN4 sites, which impacted the length of the Fe-N bonds and the local strains. The structural evolution of Fe-N bonds was examined at the atomic level. First-principles calculations further elucidated the origin of intrinsic activity improvement associated with the optimal local strain of the Fe-N bond.

7.
J Am Chem Soc ; 141(13): 5350-5358, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30840822

RESUMO

Electronic structure modulation of metal-organic frameworks (MOFs) through the connection of linker "wires" as a function of an external stimulus is reported for the first time. The established correlation between MOF electronic properties and photoisomerization kinetics as well as changes in an absorption profile is unprecedented for extended well-defined structures containing coordinatively integrated photoresponsive linkers. The presented studies were carried out on both single crystal and bulk powder with preservation of framework integrity. An LED-containing electric circuit, in which the switching behavior was driven by the changes in MOF electronic profile, was built for visualization of experimental findings. The demonstrated concept could be used as a blueprint for development of stimuli-responsive materials with dynamically controlled electronic behavior.

8.
J Am Chem Soc ; 141(29): 11628-11640, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31276404

RESUMO

Thermodynamic studies of actinide-containing metal-organic frameworks (An-MOFs), reported herein for the first time, are a step toward addressing challenges related to effective nuclear waste administration. In addition to An-MOF thermochemistry, enthalpies of formation were determined for the organic linkers, 2,2'-dimethylbiphenyl-4,4'-dicarboxylic acid (H2Me2BPDC) and biphenyl-4,4'-dicarboxylic acid (H2BPDC), which are commonly used building blocks for MOF preparation. The electronic structure of the first example of An-MOF with mixed-metal AnAn'-nodes was influenced through coordination of transition metals as shown by the density of states near the Fermi edge, changes in the Tauc plot, conductivity measurements, and theoretical calculations. The "structural memory" effect (i.e., solvent-directed crystalline-amorphous-crystalline structural dynamism) was demonstrated as a function of node coordination degree, which is the number of organic linkers per metal node. Remarkable three-month water stability was reported for Th-containing frameworks herein, and the mechanism is also considered for improvement of the behavior of a U-based framework in water. Mechanistic aspects of capping linker installation were highlighted through crystallographic characterization of the intermediate, and theoretical calculations of free energies of formation (ΔGf) for U- and Th-MOFs with 10- and 12-coordinated secondary building units (SBUs) were performed to elucidate experimentally observed transformations during the installation processes. Overall, these results are the first thermochemical, electronic, and mechanistic insights for a relatively young class of actinide-containing frameworks.

9.
Inorg Chem ; 58(13): 8702-8709, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31247869

RESUMO

Single crystals of 12 new cesium rare earth germanates crystallizing in two new structure types were grown from a CsCl/CsF flux. Cs3REGe3O9 (RE = Pr, Nd, and Sm-Yb), a new family of germanates that form for almost the entire series of rare earth elements, crystallizes in orthorhombic space group Pna21 with lattice parameters in the following ranges: a = 13.7033(4)-14.022(2) Å, b = 7.0545(2)-7.2405(12) Å, and c = 12.6672(4)-12.836(2) Å. Surprisingly, the Tb reaction yielded both Cs3TbGe3O9 and Cs8Tb3Ge9O27, a rare example of a mixed-valent Tb(III)/Tb(IV) compound. Cs8Tb3Ge9O27 crystallizes in space group P3 with the following lattice parameters: a = 11.2906(4) Å, and c = 7.9605(3) Å. The mixed-valent oxidation state of Tb was confirmed by structure solution, bond-valence sums, X-ray photoelectron spectroscopy data, and magnetic data. Optical and magnetic properties are reported for both sets of compounds.

10.
Inorg Chem ; 58(22): 15078-15087, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31661254

RESUMO

The remarkable water stability of Zr-carboxylate-based metal-organic frameworks (MOFs) stimulated considerable interest toward their utilization in aqueous phase applications. The origin of such stability is probed here through pH titration and pKa modeling. A unique feature of the Zr6(µ3-OH)4(µ3-O)4(RCO2)12 cluster is the Zr-bridging oxo/hydroxyl groups, demonstrating several pKa values that appear to provide for the water stability at a wide range of pH. Accordingly, the tunability of the cage/surface charge of the MOF can feasibly be controlled through careful adjustment of solution pH. Such high stability, and facile control over cage/surface charge, can additionally be augmented through introducing chemical functionalities lining the cages of the MOF, specifically amine groups in the UiO-66-NH2 presented herein. The variable protonation states of the Zr cluster and the pendant amino groups, their H-bond donor/acceptor characteristics, and their electrostatic interactions with guest molecules were effectively utilized in controlled experiments to demonstrate high uptake of model guest molecules (137 mg/g for Cr(VI), 1275 mg/g for methylene blue, and 909 mg/g for methyl orange). Additionally, a practical form of the silica-supported MOF, UiO-66-NH2@SiO2, constructed in under 2 h reaction time, is described, generating a true platform microporous sorbent for practical use in demanding applications.

11.
Nano Lett ; 18(7): 4163-4171, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29874468

RESUMO

Highly ordered Pt alloy structures are proven effective to improve their catalytic activity and stability for the oxygen reduction reaction (ORR) for proton exchange membrane fuel cells. Here, we report a new approach to preparing ordered Pt3Co intermetallic nanoparticles through a facile thermal treatment of Pt nanoparticles supported on Co-doped metal-organic-framework (MOF)-derived carbon. In particular, the atomically dispersed Co sites, which are originally embedded into MOF-derived carbon, diffuse into Pt nanocrystals and form ordered Pt3Co structures. It is very crucial for the formation of the ordered Pt3Co to carefully control the doping content of Co into the MOFs and the heating temperatures for Co diffusion. The optimal Pt3Co nanoparticle catalyst has achieved significantly enhanced activity and stability, exhibiting a half-wave potential up to 0.92 V vs reversible hydrogen electrode (RHE) and only losing 12 mV after 30 000 potential cycling between 0.6 and 1.0 V. The highly ordered intermetallic structure was retained after the accelerated stress tests made evident by atomic-scale elemental mapping. Fuel cell tests further verified the high intrinsic activity of the ordered Pt3Co catalysts. Unlike the direct use of MOF-derived carbon supports for depositing Pt, we utilized MOF-derived carbon containing atomically dispersed Co sites as Co sources to prepare ordered Pt3Co intermetallic catalysts. The new synthesis approach provides an effective strategy to develop active and stable Pt alloy catalysts by leveraging the unique properties of MOFs such as 3D structures, high surface areas, and controlled nitrogen and transition metal dopings.

12.
Angew Chem Int Ed Engl ; 58(52): 18971-18980, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31633848

RESUMO

FeN4 moieties embedded in partially graphitized carbon are the most efficient platinum group metal free active sites for the oxygen reduction reaction in acidic proton-exchange membrane fuel cells. However, their formation mechanisms have remained elusive for decades because the Fe-N bond formation process always convolutes with uncontrolled carbonization and nitrogen doping during high-temperature treatment. Here, we elucidate the FeN4 site formation mechanisms through hosting Fe ions into a nitrogen-doped carbon followed by a controlled thermal activation. Among the studied hosts, the ZIF-8-derived nitrogen-doped carbon is an ideal model with well-defined nitrogen doping and porosity. This approach is able to deconvolute Fe-N bond formation from complex carbonization and nitrogen doping, which correlates Fe-N bond properties with the activity and stability of FeN4 sites as a function of the thermal activation temperature.

13.
Inorg Chem ; 57(8): 4244-4247, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29607639

RESUMO

The first entirely pentavalent uranium borate, Na2(UO2)(BO3), was synthesized under mild hydrothermal conditions. The single-crystal structure was solved in the orthorhombic space group Cmcm with a = 10.0472(3) Å, b = 6.5942(2) Å, and c = 6.9569(2) Å. Magnetic susceptibility measurements revealed an antiferromagnetic transition at 12 K and an effective magnetic moment of 2.33 µB. Density functional theory calculations indicated dynamic stability of the structure above 0 K.

14.
Phys Chem Chem Phys ; 20(4): 2196-2204, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29234757

RESUMO

The water-oxygen-gold interface is important in many surface processes and has potential influence on heterogeneous catalysis. Herein, it is shown that water facilitates the migration of atomic oxygen on Au(110), demonstrating the dynamic nature of surface adsorption. We demonstrate this effect for the first time, using in situ scanning tunnelling microscopy (STM), temperature-programmed reaction spectroscopy (TPRS) and first-principles theoretical calculations. The dynamic interaction of water with adsorbed O maintains a high dispersion of O on the surface, potentially creating reactive transient species. At low temperature and pressure, isotopic experiments show that adsorbed oxygen on the Au(110) surface exchanges with oxygen in H218O. The presence of water modulates local electronic properties and facilitates oxygen exchange. Combining experimental results and theory, we propose that hydroxyl is transiently formed via proton transfer from the water to adsorbed oxygen. Hydroxyl groups easily recombine to regenerate water and adsorbed oxygen atoms, the net result of which is migration of the adsorbed oxygen without significant change in its overall distribution on the surface. The presence of water creates a dynamic surface where mobile surface oxygen atoms and hydroxyls are present, which can lead to a better performance of gold catalysis in oxidation reactions.

15.
Angew Chem Int Ed Engl ; 57(35): 11310-11315, 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-29974583

RESUMO

We report the first examples of purely organic donor-acceptor materials with integrated π-bowls (πBs) that combine not only crystallinity and high surface areas but also exhibit tunable electronic properties, resulting in a four-orders-of-magnitude conductivity enhancement in comparison with the parent framework. In addition to the first report of alkyne-azide cycloaddition utilized for corannulene immobilization in the solid state, we also probed the charge transfer rate within the Marcus theory as a function of mutual πB orientation for the first time, as well as shed light on the density of states near the Fermi edge. These studies could foreshadow new avenues for πB utilization for the development of optoelectronic devices or a route for highly efficient porous electrodes.

16.
J Am Chem Soc ; 139(40): 14143-14149, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28901758

RESUMO

It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe3+ to Fe2+) likely bonded with pyridinic N (FeN4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe-N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H2SO4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 µgPt/cm2). Enhanced stability is attained with the same catalyst, which loses only 20 mV after 10 000 potential cycles (0.6-1.0 V) in O2 saturated acid. The high-performance atomic Fe PGM-free catalyst holds great promise as a replacement for Pt in future PEMFCs.

17.
J Am Chem Soc ; 139(46): 16852-16861, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29069547

RESUMO

Growing necessity for efficient nuclear waste management is a driving force for development of alternative architectures toward fundamental understanding of mechanisms involved in actinide (An) integration inside extended structures. In this manuscript, metal-organic frameworks (MOFs) were investigated as a model system for engineering radionuclide containing materials through utilization of unprecedented MOF modularity, which cannot be replicated in any other type of materials. Through the implementation of recent synthetic advances in the MOF field, hierarchical complexity of An-materials was built stepwise, which was only feasible due to preparation of the first examples of actinide-based frameworks with "unsaturated" metal nodes. The first successful attempts of solid-state metathesis and metal node extension in An-MOFs are reported, and the results of the former approach revealed drastic differences in chemical behavior of extended structures versus molecular species. Successful utilization of MOF modularity also allowed us to structurally characterize the first example of bimetallic An-An nodes. To the best of our knowledge, through combination of solid-state metathesis, guest incorporation, and capping linker installation, we were able to achieve the highest Th wt % in mono- and biactinide frameworks with minimal structural density. Overall, the combination of a multistep synthetic approach with homogeneous actinide distribution and moderate solvothermal conditions could make MOFs an exceptionally powerful tool to address fundamental questions responsible for chemical behavior of An-based extended structures and, therefore, shed light on possible optimization of nuclear waste administration.

18.
Angew Chem Int Ed Engl ; 56(16): 4525-4529, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28332256

RESUMO

We report the first example of a donor-acceptor corannulene-containing hybrid material with rapid ligand-to-ligand energy transfer (ET). Additionally, we provide the first time-resolved photoluminescence (PL) data for any corannulene-based compounds in the solid state. Comprehensive analysis of PL data in combination with theoretical calculations of donor-acceptor exciton coupling was employed to estimate ET rate and efficiency in the prepared material. The ligand-to-ligand ET rate calculated using two models is comparable with that observed in fullerene-containing materials, which are generally considered for molecular electronics development. Thus, the presented studies not only demonstrate the possibility of merging the intrinsic properties of π-bowls, specifically corannulene derivatives, with the versatility of crystalline hybrid scaffolds, but could also foreshadow the engineering of a novel class of hierarchical corannulene-based hybrid materials for optoelectronic devices.

19.
J Am Chem Soc ; 138(46): 15243-15250, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27775885

RESUMO

Enhancing the selectivity of catalytic processes has potential for substantially increasing the sustainability of chemical production. Herein, we establish relationships between reaction selectivity and molecular structure for a homologous series of key intermediates for oxidative coupling of alcohols on gold using a combination of experiment and theory. We establish a scale of binding for molecules with different alkyl structures and chain lengths and thereby demonstrate the critical nature of noncovalent van der Waals interactions in determining the selectivity by modulating the stability of key reaction intermediates bound to the surface. The binding hierarchy is the same for Au(111) and Au(110), which demonstrates a relative lack of sensitivity to the surface structure. The hierarchy of binding established in this work provides guiding principles for predicting how molecular structure affects the competition for binding sites more broadly. Besides the nature of the primary surface-molecule bonding, three additional factors that affect the stabilities of the reactive intermediates are clearly established: (1) the number of C atoms in the alkyl chain, (2) the presence of C-C bond unsaturation, and (3) the degree of branching of the alkyl group of the adsorbed molecules. We suggest that this is a fundamental principle that is generally applicable to a broad range of reactions on metal catalysts.

20.
Angew Chem Int Ed Engl ; 55(21): 6225-8, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27071736

RESUMO

The adsorption of propylene oxide, a chiral molecule, on a Pt(111) single-crystal surface was studied as a function of enantiomeric composition by temperature programmed desorption (TPD) and molecular beams. Two opposing trends were observed leading to variations in the enantiomeric excess (ee) of the chemisorbed layers with respect to the composition of the gas-phase mixtures: a kinetic effect dominant during the initial uptake, with a preference toward the formation of enantiopure layers, and a steady-state effect seen after approximately monolayer half-saturation, at which point the preference is toward racemization. These effects may account for important phenomena such as the bias toward one chirality in biological systems and the selective crystallization of some chiral compounds, and may also be used in practical applications for chemical separations and catalysis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa