RESUMO
BACKGROUND: Genome wide association studies (GWAS) have identified and validated more than 200 genomic loci associated with the inflammatory bowel disease (IBD), although for most the causal gene remains unknown. Given the importance of myeloid cells in IBD pathogenesis, the current study aimed to uncover the role of genes within IBD genetic loci that are endogenously expressed in this cell lineage. METHODS: The open reading frames (ORF) of 42 genes from IBD-associated loci were expressed via lentiviral transfer in the THP-1 model of human monocytes and the impact of each of these on the cell's transcriptome was analyzed using a RNA sequencing-based approach. We used a combination of genetic and pharmacologic approaches to validate our findings in the THP-1 line with further validation in human induced pluripotent stem cell (hiPSC)-derived-monocytes. RESULTS: This functional genomics screen provided evidence that genes in four IBD GWAS loci (PTGIR, ZBTB40, SLC39A11 and NFKB1) are involved in controlling S100A8 and S100A9 gene expression, which encode the two subunits of calprotectin (CP). We demonstrated that increasing PTGIR expression and/or stimulating PTGIR signaling resulted in increased CP expression in THP-1. This was further validated in hiPSC-derived monocytes. Conversely, knocking-down PTGIR endogenous expression and/or inhibiting PTGIR signaling led to decreased CP expression. These analyses were extended to the known IBD gene PTGER4, whereby its specific agonist also led to increased CP expression. Furthermore, we demonstrated that the PTGIR and PTGER4 mediated control of CP expression was dependent on signaling via adenylate cyclase and STAT3. Finally, we demonstrated that LPS-mediated increases in CP expression could be potentiated by agonists of PTGIR and PTGER4, and diminished by their antagonists. CONCLUSION: Our results support a causal role for the PTGIR, PTGER4, ZBTB40, SLC39A11 and NFKB1 genes in IBD, with all five genes regulating the expression of CP in myeloid cells, as well as potential roles for the prostacyclin/prostaglandin biogenesis and signaling pathways in IBD susceptibility and pathogenesis.
Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Inflamatórias Intestinais , Adenilil Ciclases/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Doenças Inflamatórias Intestinais/genética , Complexo Antígeno L1 Leucocitário/genética , Lipopolissacarídeos , Prostaglandinas , Prostaglandinas IRESUMO
BACKGROUND: Chronic post-surgical pain (CPSP) significantly impacts patients' recovery and quality of life. Although environmental risk factors are well-established, genetic risk remains less understood. METHODS: A meta-analysis of genome-wide association studies followed by partitioned heritability was performed on 1350 individuals across five surgery types: hysterectomy, mastectomy, abdominal, hernia, and knee. In subsequent animal studies, withdrawal thresholds to evoked mechanical stimulation were measured in Rag1 null mutant and wild-type mice after plantar incision and laparotomy. Cell sorting by flow cytometry tracked recruitment of immune cell types. RESULTS: We discovered 77 genome-wide significant single-nucleotide polymorphism (SNP) hits, distributed among 24 loci and 244 genes. Meta-analysis of all cohorts estimated a SNP-based narrow-sense heritability for CPSP at â¼39%, indicating a substantial genetic contribution. Partitioned heritability analysis across a wide variety of tissues revealed enrichment of heritability in immune system-related genes, particularly those associated with B and T cells. Rag1 null mutant mice lacking both T and B cells exhibited exacerbated and prolonged allodynia up to 42 days after surgery, which was rescued by B-cell transfer. Recruitment patterns of B cells but not T cells differed significantly during the first 7 days after injury in the footpad, lymph nodes, and dorsal root ganglia. CONCLUSIONS: These findings suggest a key protective role for the adaptive immune system in the development of chronic post-surgical pain.
Assuntos
Linfócitos B , Dor Crônica , Estudo de Associação Genômica Ampla , Dor Pós-Operatória , Animais , Feminino , Humanos , Masculino , Camundongos , Linfócitos B/imunologia , Dor Crônica/genética , Modelos Animais de Doenças , Hiperalgesia/genética , Camundongos Knockout , Dor Pós-Operatória/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
SP140 locus has been associated with multiple sclerosis (MS) as well as other autoimmune diseases by genome-wide association studies (GWAS). The causal variant of these associations (rs28445040-T) alters the splicing of the SP140 gene transcripts reducing the protein expression. We aimed to understand why the reduction of SP140 expression produced by the risk variant can increase the susceptibility to MS. To this end, we determined by RNA sequencing (RNA-seq) analysis the differentially expressed genes after SP140 silencing in lymphoblastoid cell lines (LCLs). We analyzed these genes by gene ontology (GO), comparative transcriptome profiles, enrichment of transcription factors (TFs) in the promoters of these genes and colocalization with GWAS risk variants. We also monitored the activity of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in SP140-silenced cells by luciferase reporter system. We identified 100 genes that were up-regulated and 22 genes down-regulated in SP140-silenced LCLs. GO analysis revealed that genes affected by SP140 were involved in regulation of cytokine production, inflammatory response and cell-cell adhesion. We observed enrichment of NF-κB TF in the promoter of up-regulated genes and NF-κB-increased activity in SP140-silenced cell lines. We showed enrichment of genes regulated by SP140 in GWAS-detected risk loci for MS (14.63 folds), Crohn's disease (4.82 folds) and inflammatory bowel disease (4.47 folds), not observed in other unrelated immune diseases. Our findings showed that SP140 is an important repressor of genes implicated in inflammation, suggesting that decreased expression of SP140, promoted by the rs28445040-T risk variant, may lead to up-regulation of these genes by means of NF-κB inhibition in B cells.
Assuntos
Antígenos Nucleares/genética , Doença de Crohn/genética , Doenças Inflamatórias Intestinais/genética , Esclerose Múltipla/genética , Fatores de Transcrição/genética , Processamento Alternativo/genética , Linfócitos B/metabolismo , Linhagem Celular , Doença de Crohn/patologia , Regulação da Expressão Gênica/genética , Inativação Gênica , Estudo de Associação Genômica Ampla , Humanos , Doenças Inflamatórias Intestinais/patologia , Esclerose Múltipla/patologia , NF-kappa B/genética , Análise de Sequência de RNA , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/classificação , Transcriptoma/genéticaRESUMO
Several variants in strong linkage disequilibrium (LD) at the SP140 locus have been associated with multiple sclerosis (MS), Crohn's disease (CD) and chronic lymphocytic leukemia (CLL). To determine the causal polymorphism, we have integrated high-density data sets of expression quantitative trait loci (eQTL), using GEUVADIS RNA sequences and 1000 Genomes genotypes, with MS-risk variants of the high-density Immunochip array performed by the International Multiple Sclerosis Genetic Consortium (IMSGC). The variants most associated with MS were also correlated with a decreased expression of the full-length RNA isoform of SP140 and an increase of an isoform lacking exon 7. By exon splicing assay, we have demonstrated that the rs28445040 variant was the causal factor for skipping of exon 7. Western blots of peripheral blood mononuclear cells from MS patients showed a significant allele-dependent reduction of the SP140 protein expression. To confirm the association of this functional variant with MS and to compare it with the best-associated variant previously reported by GWAS (rs10201872), a case-control study including 4384 MS patients and 3197 controls was performed. Both variants, in strong LD (r(2) = 0.93), were found similarly associated with MS [P-values, odds ratios: 1.9E-9, OR = 1.35 (1.22-1.49) and 4.9E-10, OR = 1.37 (1.24-1.51), respectively]. In conclusion, our data uncover the causal variant for the SP140 locus and the molecular mechanism associated with MS risk. In addition, this study and others previously reported strongly suggest that this functional variant may be shared with other immune-mediated diseases as CD and CLL.
Assuntos
Antígenos Nucleares/sangue , Antígenos Nucleares/genética , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/sangue , Fatores de Transcrição/genética , Estudos de Casos e Controles , Éxons , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Esclerose Múltipla/sangue , Locos de Características Quantitativas , Análise de Sequência de RNARESUMO
BACKGROUND: Vitamin D deficit is considered an important risk factor for many inflammatory and autoimmune diseases. OBJECTIVE: To investigate the influence of the multiple sclerosis (MS)-associated regulatory variant rs10877013 on the expression of genes involved in vitamin D activation (CYP27B1), vitamin D receptor (VDR), and vitamin D degradation (CYP24A1) under inflammatory environment or vitamin D. METHODS: We used lipopolysaccharide and interferon-gamma (LPS+IFNγ) activated monocytes from 119 individuals and vitamin D-stimulated lymphoblastoid cell lines (LCLs, n = 109) of 1000 genomes to quantify the mRNA expression of vitamin D genes by quantitative reverse transcription polymerase chain reaction (RT-qPCR). RESULTS: We found that CYP27B1 mRNA expression level was associated with the rs10877013 genotypes (p = 5.0E-6) in LPS+IFNγ treated monocytes, but not in vitamin D-stimulated LCLs. Inversely, rs10877013 genotypes were associated with VDR expression in LCLs (p = 6.0E-4) but not in monocytes. Finally, CYP24A1 was highly induced by the active form of vitamin D and its expression correlated with the expression of VDR in LCLs but neither the MS-associated variant in the region (rs2248359) nor any other variant located in 1 Mb around CYP24A1 was associated with its expression. CONCLUSIONS: The MS-associated variant rs10877013 is a genetic determinant that affects the functioning of the vitamin D system linking environmental and genetic factors.
Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único , Receptores de Calcitriol/genética , Vitamina D/farmacologia , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Monócitos/enzimologia , Monócitos/imunologia , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/enzimologia , Esclerose Múltipla/imunologia , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/metabolismo , Fatores de Tempo , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismoRESUMO
Introduction: Chronic primary pain conditions (CPPCs) are linked to catecholamine activation of peripheral adrenergic receptors. Yet, catecholamine-dependent epigenetic mechanisms, such as microRNA (miRNA) regulation of mRNA transcripts, remain largely unknown. Objectives: We sought to identify RNA species correlated with case status in 3 pain cohorts, to validate RNAs found to be dysregulated in a mouse model of CPPC onset, and to directly test the role of adrenergic receptors in miRNA regulation. Furthermore, we tested antinociceptive effects of miR-374 overexpression. Methods: We used RNA-seq and quantitative reverse transcription polymerase chain reaction to measure RNA expression in 3 pain cohorts. Next, we validated identified RNAs with quantitative reverse transcription polymerase chain reaction in a mouse model of CPPC onset, measuring expression in plasma, peripheral (adipose, muscle, dorsal root ganglia [DRG]), and central (spinal cord) tissues. Then, we stimulated adrenergic receptors in primary adipocyte and DRG cultures to directly test regulation of microRNAs by adrenergic signaling. Furthermore, we used in vitro calcium imaging to measure the antinociceptive effects of miR-374 overexpression. Results: We found that one miRNA family, miR-374, was downregulated in the plasma of individuals with temporomandibular disorder, fibromyalgia syndrome, or widespread pain following a motor vehicle collision. miR-374 was also downregulated in plasma, white adipose tissue, and spinal cord from mice with multisite mechanical sensitivity. miR-374 downregulation in plasma and spinal cord was female specific. Norepinephrine stimulation of primary adipocytes, but not DRG, led to decreased miR-374 expression. Furthermore, we identified tissue-specific and sex-specific changes in the expression of predicted miR-374 mRNA targets, including known (HIF1A, NUMB, TGFBR2) and new (ATXN7, CRK-II) pain targets. Finally, we demonstrated that miR-374 overexpression in DRG neurons reduced capsaicin-induced nociceptor activity. Conclusions: Downregulation of miR-374 occurs between adrenergic receptor activation and mechanical hypersensitivity, and its adipocyte source implicates adipose signaling in nociception. Further study of miR-374 may inform therapeutic strategies for the millions worldwide who experience CPPCs.
RESUMO
BACKGROUND: Multipotential hematopoietic stem cells differentiate into a wide variety of immune cells with a diversity of functions, including the ability to respond to a variety of stimuli. Importantly, numerous studies have demonstrated the importance of gene transcription in defining cell identity and functions. While these studies have primarily been performed at the level of the gene, it is known that key immune genes such as CD44 and CD45 generate multiple different transcripts that are differentially expressed across different immune cells, and that encode proteins with different sequences and functions. Prior genomic surveys have shown that the mechanisms for generating diversity in expressed transcripts (alternate splicing, alternate transcription start sites, etc.) are very active in immune cells, but have been lacking in terms of identifying genes with multiple transcripts, that are differentially expressed, and likely to affect cell functions. METHODS: We first identified the set of genes that had at least two transcripts expressed in our RNA sequencing dataset generated from purified populations of neutrophils, monocytes and five lymphocyte populations (B, NK, γδ T, CD4 + T and CD8 + T) from twelve healthy donors. Next, we developed a heuristic approach to identify genes where two or more transcripts have distinct expression patterns across lymphoid and/or myeloid populations. We then focused our annotation and interpretation on differentially expressed transcripts that affect the coding sequence. This process was repeated to identify transcripts that were differentially expressed between monocytes and populations of macrophages and LPS-stimulated macrophages derived from these monocytes in vitro. RESULTS: We found that over 55 % of genes had two or more expressed transcripts, with an average â¼3 transcripts per gene, and that 70 % of these had at least two of the transcripts that encoded proteins with different sequences. As expected, we identified a complex pattern of differential expression for multiple transcripts encoding the CD45 transmembrane protein, but we also found similar evidence for ten other genes (CD300A, FYB1, GPI, LITAF, PSMA1, PTMA, RPL32, SEPTIN9, SH3BP2, SH3KBP1) when comparing the expression patterns of transcripts within myeloid and lymphoid cells. We also identified five genes with differentially expressed transcripts associated with the transition from monocytes to macrophages (FNBP1, KLF6, and SEPTIN9) or between macrophages and LPS-stimulated macrophages (CD44, OAZ2, and SEPTIN9). For the most part, we found that the different transcripts of these genes are expected to impact specific biological functions, for example the different transcripts of SEPTIN9 likely regulate the cytoskeleton in immune cells via their interactions with actins filaments and microtubules. CONCLUSIONS: This analytic approach successfully identified multi-transcript genes that are differentially expressed across immune cells and could be applied to other transcriptomic data. DATA AVAILABILITY STATEMENT: Researchers can request access to the individual-level data from the current study by contacting the Montreal Heart Institute ethics committee at the following institutional email address: cer.icm@icm-mhi.org.
Assuntos
Lipopolissacarídeos , Transcriptoma , Humanos , Transcriptoma/genética , Perfilação da Expressão Gênica , Fatores de Transcrição/metabolismo , Macrófagos/metabolismoRESUMO
Chronic post-surgical pain affects a large proportion of people undergoing surgery, delaying recovery time and worsening quality of life. Although many environmental variables have been established as risk factors, less is known about genetic risk. To uncover genetic risk factors we performed genome-wide association studies in post-surgical cohorts of five surgery types- hysterectomy, mastectomy, abdominal, hernia, and knee- totaling 1350 individuals. Genetic associations between post-surgical chronic pain levels on a numeric rating scale (NRS) and additive genetic effects at common SNPs were evaluated. We observed genome-wide significant hits in almost all cohorts that displayed significance at the SNP, gene, and pathway levels. The cohorts were then combined via a GWAS meta-analysis framework for further analyses. Using partitioned heritability, we found that loci at genes specifically expressed in the immune system carried enriched heritability, especially genes related to B and T cells. The relevance of B cells in particular was then demonstrated in mouse postoperative pain assays. Taken altogether, our results suggest a role for the adaptive immune system in chronic post-surgical pain.
RESUMO
Genome-wide transcriptomic analyses have provided valuable insight into fundamental biology and disease pathophysiology. Many studies have taken advantage of the correlation in the expression patterns of the transcriptome to infer a potential biologic function of uncharacterized genes, and multiple groups have examined the relationship between co-expression, co-regulation, and gene function on a broader scale. Given the unique characteristics of immune cells circulating in the blood, we were interested in determining whether it was possible to identify functional co-expression modules in human immune cells. Specifically, we sequenced the transcriptome of nine immune cell types from peripheral blood cells of healthy donors and, using a combination of global and targeted analyses of genes within co-expression modules, we were able to determine functions for these modules that were cell lineage-specific or shared among multiple cell lineages. In addition, our analyses identified transcription factors likely important for immune cell lineage commitment and/or maintenance.
Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Sistema Imunitário/metabolismo , Leucócitos Mononucleares/metabolismo , Adulto , Linhagem da Célula , Hematopoese , Humanos , Sistema Imunitário/citologia , Leucócitos Mononucleares/fisiologia , Masculino , Análise de Sequência de RNA , Fatores de TranscriçãoRESUMO
Long-chain Acyl-CoA synthetases (ACSLs) activate fatty acids (FAs) by thioesterification with Coenzyme A (CoA), generating FA-CoAs. These products are essential for lipid metabolism and carcinogenesis. In previous study, we identified an intronic variant rs2256368:A>G, whose G allele promotes exon 20 skipping in up to 43% of ACSL5 transcripts but its functional relevance is unclear. Here, we compared the expression of splice (Spl) and nonsplice (NSpl) ACSL5 variants and the effect on cell viability under culture conditions that force cells to metabolize fatty acids. We found that lymphoblastoid cell lines from 1000 Genomes Project, bearing Spl genotypes, showed a reduced expression of total ACSL5 protein due to an inefficient translation of the Spl RNA. These cells impaired growth in cultures with phorbol myristate acetate-ionomycin (PMA-Io) or medium deprived of glucose, while production of reactive oxygen species increased in PMA-Io. Specific ACSL5-isoform transfection in HEK239T (kidney), U87 (astroglioma), and HOG (oligodendrocyte) cells showed the Spl protein to be the causal factor of cell-growth inhibition, despite its reduced protein expression. Our findings indicate that the variant rs2256368:A>G can predict a growth inhibitory activity, caused by the Spl isoform of ACSL5 protein, opposed to the activity of the NSpl. Deep understanding of its functioning might have application in metabolic diseases and cancer.
Assuntos
Sobrevivência Celular/genética , Coenzima A Ligases/genética , Metabolismo dos Lipídeos/genética , Isoformas de Proteínas/genética , Astrocitoma/genética , Astrocitoma/patologia , Coenzima A/genética , Éxons/genética , Células HEK293 , Projeto Genoma Humano , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/patologia , Neoplasias/genética , Neoplasias/patologia , Oligodendroglia/patologia , Splicing de RNA/genéticaRESUMO
Genome-wide association studies (GWAS) in migraine are providing the molecular basis of this heterogeneous disease, but the understanding of its aetiology is still incomplete. Although some biomarkers have currently been accepted for migraine, large amount of studies for identifying new ones is needed. The migraine-associated variant rs12355831:A>G (P=2 × 10-6), described in a GWAS of the International Headache Genetic Consortium, is localized in a non-coding sequence with unknown function. We sought to identify the causal variant and the genetic mechanism involved in the migraine risk. To this end, we integrated data of RNA sequences from the Genetic European Variation in Health and Disease (GEUVADIS) and genotypes from 1000 GENOMES of 344 lymphoblastoid cell lines (LCLs), to determine the expression quantitative trait loci (eQTLs) in the region. We found that the migraine-associated variant belongs to a linkage disequilibrium block associated with the expression of an acyl-coenzyme A synthetase 5 (ACSL5) transcript lacking exon 20 (ACSL5-Δ20). We showed by exon-skipping assay a direct causality of rs2256368-G in the exon 20 skipping of approximately 20 to 40% of ACSL5 RNA molecules. In conclusion, we identified the functional variant (rs2256368:A>G) affecting ACSL5 exon 20 skipping, as a causal factor linked to the migraine-associated rs12355831:A>G, suggesting that the activation of long-chain fatty acids by the spliced ACSL5-Δ20 molecules, a mitochondrial located enzyme, is involved in migraine pathology.