Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 41(22): 4910-4936, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33888607

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease mainly characterized by motor incoordination because of progressive cerebellar degeneration. SCA7 is caused by polyglutamine expansion in ATXN7, a subunit of the transcriptional coactivator SAGA, which harbors histone modification activities. Polyglutamine expansions in specific proteins are also responsible for SCA1-SCA3, SCA6, and SCA17; however, the converging and diverging pathomechanisms remain poorly understood. Using a new SCA7 knock-in mouse, SCA7140Q/5Q, we analyzed gene expression in the cerebellum and assigned gene deregulation to specific cell types using published datasets. Gene deregulation affects all cerebellar cell types, although at variable degree, and correlates with alterations of SAGA-dependent epigenetic marks. Purkinje cells (PCs) are by far the most affected neurons and show reduced expression of 83 cell-type identity genes, including these critical for their spontaneous firing activity and synaptic functions. PC gene downregulation precedes morphologic alterations, pacemaker dysfunction, and motor incoordination. Strikingly, most PC genes downregulated in SCA7 have also decreased expression in SCA1 and SCA2 mice, revealing converging pathomechanisms and a common disease signature involving cGMP-PKG and phosphatidylinositol signaling pathways and LTD. Our study thus points out molecular targets for therapeutic development, which may prove beneficial for several SCAs. Furthermore, we show that SCA7140Q/5Q males and females exhibit the major disease features observed in patients, including cerebellar damage, cerebral atrophy, peripheral nerves pathology, and photoreceptor dystrophy, which account for progressive impairment of behavior, motor, and visual functions. SCA7140Q/5Q mice represent an accurate model for the investigation of different aspects of SCA7 pathogenesis.SIGNIFICANCE STATEMENT Spinocerebellar ataxia 7 (SCA7) is one of the several forms of inherited SCAs characterized by cerebellar degeneration because of polyglutamine expansion in specific proteins. The ATXN7 involved in SCA7 is a subunit of SAGA transcriptional coactivator complex. To understand the pathomechanisms of SCA7, we determined the cell type-specific gene deregulation in SCA7 mouse cerebellum. We found that the Purkinje cells are the most affected cerebellar cell type and show downregulation of a large subset of neuronal identity genes, critical for their spontaneous firing and synaptic functions. Strikingly, the same Purkinje cell genes are downregulated in mouse models of two other SCAs. Thus, our work reveals a disease signature shared among several SCAs and uncovers potential molecular targets for their treatment.


Assuntos
Cerebelo/patologia , Células de Purkinje/patologia , Ataxias Espinocerebelares/patologia , Animais , Regulação para Baixo , Feminino , Técnicas de Introdução de Genes , Masculino , Camundongos , Transcriptoma
2.
Hum Mol Genet ; 28(6): 912-927, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445451

RESUMO

Polyglutamine (polyQ) expansion in Ataxin-7 (ATXN7) results in spinocerebellar ataxia type 7 (SCA7) and causes visual impairment. SCA7 photoreceptors progressively lose their outer segments (OSs), a structure essential for their visual function. ATXN7 is a subunit of the transcriptional coactivator Spt-Ada-Gcn5 Acetyltransferase complex, implicated in the development of the visual system in flies. To determine the function of ATXN7 in the vertebrate eye, we have inactivated ATXN7 in zebrafish. While ATXN7 depletion in flies led to gross retinal degeneration, in zebrafish, it primarily results in ocular coloboma, a structural malformation responsible for pediatric visual impairment in humans. ATXN7 inactivation leads to elevated Hedgehog signaling in the forebrain, causing an alteration of proximo-distal patterning of the optic vesicle during early eye development and coloboma. At later developmental stages, malformations of photoreceptors due to incomplete formation of their OSs are observed and correlate with altered expression of crx, a key transcription factor involved in the formation of photoreceptor OS. Therefore, we propose that a primary toxic effect of polyQ expansion is the alteration of ATXN7 function in the daily renewal of OS in SCA7. Together, our data indicate that ATXN7 plays an essential role in vertebrate eye morphogenesis and photoreceptor differentiation, and its loss of function may contribute to the development of human coloboma.


Assuntos
Ataxina-7/deficiência , Coloboma/etiologia , Coloboma/metabolismo , Predisposição Genética para Doença , Células Fotorreceptoras/metabolismo , Subunidades Proteicas/deficiência , Transativadores/genética , Animais , Animais Geneticamente Modificados , Biomarcadores , Padronização Corporal/genética , Diferenciação Celular , Coloboma/patologia , Modelos Animais de Doenças , Edição de Genes , Regulação da Expressão Gênica , Histonas/metabolismo , Imuno-Histoquímica , Modelos Biológicos , Nervo Óptico/embriologia , Nervo Óptico/metabolismo , Organogênese/genética , Fenótipo , Células Fotorreceptoras/patologia , Processamento de Proteína Pós-Traducional , Transativadores/química , Transativadores/metabolismo , Peixe-Zebra
3.
J Neurosci ; 39(13): 2398-2415, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30692221

RESUMO

Primary cilia are essential for CNS development. In the mouse, they play a critical role in patterning the spinal cord and telencephalon via the regulation of Hedgehog/Gli signaling. However, despite the frequent disruption of this signaling pathway in human forebrain malformations, the role of primary cilia in forebrain morphogenesis has been little investigated outside the telencephalon. Here we studied development of the diencephalon, hypothalamus and eyes in mutant mice in which the Ftm/Rpgrip1l ciliopathy gene is disrupted. At the end of gestation, Ftm-/- fetuses displayed anophthalmia, a reduction of the ventral hypothalamus and a disorganization of diencephalic nuclei and axonal tracts. In Ftm-/- embryos, we found that the ventral forebrain structures and the rostral thalamus were missing. Optic vesicles formed but lacked the optic cups. In Ftm-/- embryos, Sonic hedgehog (Shh) expression was virtually lost in the ventral forebrain but maintained in the zona limitans intrathalamica (ZLI), the mid-diencephalic organizer. Gli activity was severely downregulated but not lost in the ventral forebrain and in regions adjacent to the Shh-expressing ZLI. Reintroduction of the repressor form of Gli3 into the Ftm-/- background restored optic cup formation. Our data thus uncover a complex role of cilia in development of the diencephalon, hypothalamus and eyes via the region-specific control of the ratio of activator and repressor forms of the Gli transcription factors. They call for a closer examination of forebrain defects in severe ciliopathies and for a search for ciliopathy genes as modifiers in other human conditions with forebrain defects.SIGNIFICANCE STATEMENT The Hedgehog (Hh) signaling pathway is essential for proper forebrain development as illustrated by a human condition called holoprosencephaly. The Hh pathway relies on primary cilia, cellular organelles that receive and transduce extracellular signals and whose dysfunctions lead to rare inherited diseases called ciliopathies. To date, the role of cilia in the forebrain has been poorly studied outside the telencephalon. In this paper we study the role of the Ftm/Rpgrip1l ciliopathy gene in mouse forebrain development. We uncover complex functions of primary cilia in forebrain morphogenesis through region-specific modulation of the Hh pathway. Our data call for further examination of forebrain defects in ciliopathies and for a search for ciliopathy genes as modifiers in human conditions affecting forebrain development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Olho/embriologia , Olho/metabolismo , Hipotálamo/embriologia , Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Tálamo/embriologia , Tálamo/metabolismo
4.
BMC Bioinformatics ; 20(1): 470, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31521111

RESUMO

BACKGROUND: Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell cycle durations set up the final neuronal output. To understand the respective roles of these factors in the neurogenesis process, we combine experimental in vivo studies with mathematical modeling and numerical simulations of the dynamics of neural progenitor cells. A special focus is put on the population of intermediate progenitors (IPs), a transit amplifying progenitor type critically involved in the size of the final neuron pool. RESULTS: A multiscale formalism describing IP dynamics allows one to track the progression of cells along the subsequent phases of the cell cycle, as well as the temporal evolution of the different cell numbers. Our model takes into account the dividing apical progenitors (AP) engaged into neurogenesis, both neurogenic and proliferative IPs, and the newborn neurons. The transfer rates from one population to another are subject to the mode of division (proliferative, or neurogenic) and may be time-varying. The model outputs are successfully fitted to experimental cell numbers from mouse embryos at different stages of cortical development, taking into account IPs and neurons, in order to adjust the numerical parameters. We provide additional information on cell kinetics, such as the mitotic and S phase indexes, and neurogenic fraction. CONCLUSIONS: Applying the model to a mouse mutant for Ftm/Rpgrip1l, a gene involved in human ciliopathies with severe brain abnormalities, reveals a shortening of the neurogenic period associated with an increased influx of newborn IPs from apical progenitors at mid-neurogenesis. Our model can be used to study other mouse mutants with cortical neurogenesis defects and can be adapted to study the importance of progenitor dynamics in cortical evolution and human diseases.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Modelos Biológicos , Neurogênese , Animais , Ciclo Celular , Divisão Celular , Córtex Cerebral/fisiopatologia , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Humanos , Camundongos , Mutação , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Proteínas/genética
5.
Adv Exp Med Biol ; 1049: 197-218, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29427104

RESUMO

Spinocerebellar Ataxia type 7 (SCA7, OMIM # 164500) is an autosomal dominant neurodegenerative disorder characterized by adult onset of progressive cerebellar ataxia and blindness. SCA7 is part of the large family of autosomal dominant cerebellar ataxias (ADCAs), and was estimated to account for 1-11.7% of ADCAs in diverse populations. The frequency of SCA7 is higher where local founder effects were observed as in Scandinavia, Korea, South Africa and Mexico. SCA7 is pathomechanistically related to the group of CAG/polyglutamine (polyQ) expansion disorders, which includes other SCAs (1-3, 6 and 17), Huntington's disease, spinal bulbar muscular atrophy and dentatorubro pallidoluysian atrophy. Two distinctive characteristics of SCA7 are the strong anticipation by which earlier onset and more severe symptoms are observed in successive generations of affected families, and the loss of visual acuity due to cone-rod dystrophy of the retina. The pathology is caused by an unstable CAG repeat expansion coding for a polyQ stretch in Ataxin-7 (ATXN7). PolyQ expansion in ATXN7 confers toxic properties and leads to selective neuronal degeneration in the cerebellum, the brain stem and the retina. Herein, we summarize the genetic, clinical and pathological features of SCA7 and review our current knowledge of pathomechanisms and preclinical studies.


Assuntos
Tronco Encefálico , Cerebelo , Peptídeos , Retina , Ataxias Espinocerebelares , Expansão das Repetições de Trinucleotídeos , Animais , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Efeito Fundador , Humanos , Peptídeos/genética , Peptídeos/metabolismo , Retina/metabolismo , Retina/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/terapia
6.
Neurobiol Dis ; 80: 15-28, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25989602

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by the toxic expansion of polyglutamine in the Huntingtin (HTT) protein. The pathomechanism is complex and not fully understood. Increasing evidence indicates that the loss of normal protein function also contributes to the pathogenesis, pointing out the importance of understanding the physiological roles of HTT. We provide evidence for a novel function of HTT in the cilium. HTT localizes in diverse types of cilia--including 9 + 0 non-motile sensory cilia of neurons and 9 + 2 motile multicilia of trachea and ependymal cells--which exert various functions during tissue development and homeostasis. In the photoreceptor cilium, HTT is present in all subciliary compartments from the base of the cilium and adjacent centriole to the tip of the axoneme. In HD mice, photoreceptor cilia are abnormally elongated, have hyperacetylated alpha-tubulin and show mislocalization of the intraflagellar transport proteins IFT57 and IFT88. As a consequence, intraflagellar transport function is perturbed and leads to aberrant accumulation of outer segment proteins in the photoreceptor cell bodies and disruption of outer segment integrity, all of which precede overt cell death. Strikingly, endogenous mouse HTT is strongly reduced in cilia and accumulates in photoreceptor cell bodies, suggesting that HTT loss function contributes to structural and functional defects of photoreceptor cilia in HD mouse. Our results indicate that cilia pathology participates in HD physiopathology and may represent a therapeutic target.


Assuntos
Doença de Huntington/metabolismo , Doença de Huntington/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Células Fotorreceptoras/metabolismo , Animais , Cílios/metabolismo , Cílios/ultraestrutura , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Proteína Huntingtina , Masculino , Camundongos , Camundongos Transgênicos , Microtúbulos/ultraestrutura , Células Fotorreceptoras/ultraestrutura , Retina/metabolismo , Retina/ultraestrutura
7.
Neurobiol Dis ; 40(1): 311-24, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20600911

RESUMO

In neurodegenerative disorders caused by polyglutamine (polyQ) expansion, polyQ toxicity is thought to trigger a linear cascade of successive degenerative events leading to neuronal death. To understand how neurons cope with polyQ toxicity, we studied a Spinocerebellar ataxia 7 (SCA7) mouse which expresses polyQ-expanded ATXN7 only in rod photoreceptors. We show that in response to polyQ toxicity, SCA7 rods go through a range of radically different cell fates, including apoptotic and non-apoptotic cell death, cell migration, morphological transformation into a round cell or, most remarkably, cell division. The temporal profile of retinal remodeling indicates that some degenerative pathways are triggered early in the disease but decline later on, while others worsen progressively. Retinal remodeling results in a relative maintenance of photoreceptor population, but does not preserve the retinal function. Rod responses to proteotoxicity correlate with the nature, level and ratio of mutant ATXN7 species. The multifaceted response of neurons to polyQ toxicity is an important concept for the design of therapeutic strategies.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Peptídeos/toxicidade , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia , Animais , Proteínas Reguladoras de Apoptose/genética , Ataxina-7 , Morte Celular/fisiologia , Movimento Celular/genética , Forma Celular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Degeneração Neural/etiologia , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/toxicidade , Degeneração Retiniana/etiologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Ataxias Espinocerebelares/complicações
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa