Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621175

RESUMO

Ultrafast internal conversion via a conical intersection is ubiquitous in highly efficient photochemical reactions. Internal conversion from the 1ππ* to the 1nπ* state of pyrazine is the paradigm for this phenomenon; however, the relaxation occurs in such a short time (<20 fs) that the nuclear motion is difficult to observe in real time. The present study precisely measures the vibrational coherence transferred from the 1ππ* state to the 1nπ* state using time-resolved photoelectron spectroscopy with an unprecedented time resolution of 13.3 fs and reveals the key nuclear motions that drive the internal conversion.

2.
Opt Lett ; 49(13): 3777-3780, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950265

RESUMO

We present a light source capable of generating sub-10-fs deep UV (DUV) and extreme UV (EUV) pulses for use in time-resolved photoemission spectroscopy. The fundamental output of a Ti:sapphire laser was compressed using the multi-plate method and mixed with the uncompressed second harmonic in a filamentation four-wave mixing process to generate sub-10-fs DUV pulses. Sub-10-fs EUV pulses were generated via high-order harmonic generation driven by the second harmonic pulses that were compressed using Ar gas and chirped mirrors. The minimum cross correlation time between 267 and 57 nm (corresponding to 21.7 eV) was measured to be 10.6 ± 0.4 fs.

3.
J Am Chem Soc ; 145(6): 3283-3288, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36745770

RESUMO

cis-Stilbene (cis-St) is a well-known benchmark system for cis-trans photoisomerization. cis-St also produces 4a,4b-dihydrophenanthrene (DHP) in solution with a quantum yield of less than 0.19. The ring closure reaction, however, has never been identified for gaseous cis-St, and a recent computational simulation predicted the quantum yield of DHP to be only 0.04. In the present study, we identified an ultrafast ring closure reaction of gaseous cis-St for the first time using extreme ultraviolet time-resolved photoelectron spectroscopy. Surface hopping trajectory calculations at the SA3-XMS-CASPT2(2,2) level of theory reproduce the features of the observed time-resolved photoelectron spectra and predict the cis-St:DHP:trans-St branching ratio to be 0.55:0.41:0.04, in contrast with previous estimates. The results indicate that photoexcited cis-St favors ring closure over cis-trans isomerization under the isolated condition.

4.
J Am Chem Soc ; 145(6): 3369-3381, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36724068

RESUMO

Ultrafast electronic relaxation of nucleobases from 1ππ* states to the ground state (S0) is considered essential for the photostability of DNA. However, transient absorption spectroscopy (TAS) has indicated that some nucleobases in aqueous solutions create long-lived 1nπ*/3ππ* dark states from the 1ππ* states with a high quantum yield of 0.4-0.5. We investigated electronic relaxation in pyrimidine nucleobases in both aqueous solutions and the gas phase using extreme ultraviolet (EUV) time-resolved photoelectron spectroscopy. Femtosecond EUV probe pulses cause ionization from all electronic states involved in the relaxation process, providing a clear overview of the electronic dynamics. The 1nπ* quantum yields for aqueous cytidine and uracil (Ura) derivatives were found to be considerably lower (<0.07) than previous estimates reported by TAS. On the other hand, aqueous thymine (Thy) and thymidine exhibited a longer 1ππ* lifetime and a higher quantum yield (0.12-0.22) for the 1nπ* state. A similar trend was found for isolated Thy and Ura in the gas phase: the 1ππ* lifetimes are 39 and 17 fs and the quantum yield for 1nπ* are 1.0 and 0.45 for Thy and Ura, respectively. The result indicates that single methylation to the C5 position hinders the out-of-plane deformation that drives the system to the conical intersection region between 1ππ* and S0, providing a large impact on the photophysics/photochemistry of a pyrimidine nucleobase. The significant reduction of 1nπ* yield in aqueous solution is ascribed to the destabilization of the 1nπ* state induced by hydrogen bonding.

5.
J Phys Chem A ; 126(24): 3873-3879, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35696296

RESUMO

The photoisomerization of isolated ethylene (ethene) was observed in real time from the Franck-Condon region in the 1ππ* state to ground-state products using time-resolved photoelectron spectroscopy with extreme ultraviolet (EUV, 21.7 eV) probe pulses. A combination of filamentation four-wave mixing and high-order harmonic generation was employed to obtain a temporal resolution of 31 ± 2 fs. The nuclear wave packet created by a 160 nm pump pulse accesses C═C twisted geometries within 10 fs, and the population transfer from the excited to the ground state occurs within the next 20-30 fs. Formation of vibrationally highly excited ground-state molecules was observed in less than 45 fs, and they decayed with two time constants of 0.87 and >5 ps. The interpretation of the photoelectron spectra is supported by vertical ionization energies calculated using XMS-CASPT2 along geodesically interpolated reaction paths from the Franck-Condon region to the products.

6.
J Am Chem Soc ; 143(21): 8034-8045, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34027664

RESUMO

The photoinduced ring-opening reaction of 1,3-cyclohexadiene (CHD) to produce 1,3,5-hexatriene (HT) plays an essential role in the photobiological synthesis of vitamin D3 in the skin. This reaction follows the Woodward-Hoffmann rule, and C5-C6 bond rupture via an electronically excited state occurs with conrotatory motion of the end CH2 groups. However, it is noted that the photoexcited S1(π,π*) state of CHD is not electronically correlated with the ground state of HT, and the reaction must proceed via nonadiabatic transitions. In the present study, we have clearly observed the nonadiabatic reaction pathway via the doubly excited state of CHD using ultrafast extreme UV photoelectron spectroscopy. The results indicate that the reaction occurs in only 68 fs and creates product vibrational coherence. Extensive computational simulations support the interpretation of experimental results and provide further insights into the electronic dynamics in this paradigmatic electrocyclic ring-opening reaction.

7.
J Chem Phys ; 152(14): 144503, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295374

RESUMO

Photoelectron spectroscopy of a liquid microjet requires careful energy calibration against electrokinetic charging of the microjet. For minimizing the error from this calibration procedure, Kurahashi et al. previously suggested optimization of an electrolyte concentration in aqueous solutions [Kurahashi et al., J. Chem. Phys. 140, 174506 (2014)]. More recently, Olivieri et al. proposed an alternative method of applying a variable external voltage on the liquid microjet [Olivieri et al., Phys. Chem. Chem. Phys. 18, 29506 (2016)]. In this study, we examined these two methods of calibration using extreme ultraviolet photoelectron spectroscopy with a magnetic bottle time-of-flight photoelectron spectrometer. We confirmed that the latter method flattens the vacuum level potential around the microjet, similar to the former method, while we found that the applied voltage energy-shifts the entire spectrum. Thus, careful energy recalibration is indispensable after the application of an external voltage for accurate measurements. It is also pointed out that electric conductivity of liquid on the order of 1 mS/cm is required for stable application of an external voltage. Therefore, both methods need a similar concentration of an electrolyte. Using the calibration method proposed by Olivieri et al., Perry et al. have recently revised the vertical ionization energy of liquid water to be 11.67(15) eV [Perry et al., J. Phys. Chem. Lett. 11, 1789 (2020)], which is 0.4 eV higher than the previously estimated value. While the source of this discrepancy is still unclear, we estimate that their calibration method possibly leaves uncertainty on the order of 0.1 eV.

8.
Phys Rev Lett ; 116(13): 137601, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27082002

RESUMO

We have studied ultrafast nonadiabatic dynamics of excess electrons trapped in the band gap of liquid water using time- and angle-resolved photoemission spectroscopy. Anisotropic photoemission from the first excited state was discovered, which enabled unambiguous identification of nonadiabatic transition to the ground state in 60 fs in H_{2}O and 100 fs in D_{2}O. The photoelectron kinetic energy distribution exhibited a rapid spectral shift in ca. 20 fs, which is ascribed to the librational response of a hydration shell to electronic excitation. Photoemission anisotropy indicates that the electron orbital in the excited state is depolarized in less than 40 fs.

9.
J Phys Chem A ; 120(8): 1153-9, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26836447

RESUMO

We have measured the wavelength dependence (340-215 nm) of one-photon photoemission from the ground electronic state of solvated electrons in bulk water, methanol, and ethanol. In every case, the vertical electron binding energy (VBE) gradually increased with photon energy, indicating that the photoelectron kinetic energy diminishes as a result of electron-vibration inelastic scattering prior to emission from the liquid surface. In contrast, the VBE of the Rydberg electron in DABCO (1,4-diazabicyclo[2,2,2]octane), which has a surface-excess density, revealed no clear wavelength dependence. These results suggest that the solvated electrons are created predominantly in the bulk and that VBEs measured using UV photoemission spectroscopy of liquids generally require energy corrections to account for inelastic scattering effects. From the wavelength dependence, we have re-estimated the VBEs of solvated electrons in bulk water, methanol, and ethanol to be 3.3, 3.1, and 3.1 eV, respectively. Hydrated electrons were also identified by photoemission spectroscopy using 90 nm radiation.

10.
J Chem Phys ; 145(7): 074502, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27544114

RESUMO

The charge-transfer-to-solvent (CTTS) reactions from iodide (I(-)) to H2O, D2O, methanol, and ethanol were studied by time-resolved photoelectron spectroscopy of liquid microjets using a magnetic bottle time-of-flight spectrometer with variable pass energy. Photoexcited iodide dissociates into a weak complex (a contact pair) of a solvated electron and an iodine atom in similar reaction times, 0.3 ps in H2O and D2O and 0.5 ps in methanol and ethanol, which are much shorter than their dielectric relaxation times. The results indicate that solvated electrons are formed with minimal solvent reorganization in the long-range solvent polarization field created for I(-). The photoelectron spectra for CTTS in H2O and D2O-measured with higher accuracy than in our previous study [Y. I. Suzuki et al., Chem. Sci. 2, 1094 (2011)]-indicate that internal conversion yields from the photoexcited I(-*) (CTTS) state are less than 10%, while alcohols provide 2-3 times greater yields of internal conversion from I(-*). The overall geminate recombination yields are found to be in the order of H2O > D2O > methanol > ethanol, which is opposite to the order of the mutual diffusion rates of an iodine atom and a solvated electron. This result is consistent with the transition state theory for an adiabatic outer-sphere electron transfer process, which predicts that the recombination reaction rate has a pre-exponential factor inversely proportional to a longitudinal solvent relaxation time.

11.
Opt Express ; 22(1): 1105-13, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24515070

RESUMO

We present femtosecond time-resolved X-ray absorption spectroscopy of aqueous solution using a hard x-ray free electron laser (SACLA) and a synchronized Ti:sapphire laser. The instrumental response time is 200 fs, and the repetition rate of measurement is 10 Hz. A cylindrical liquid beam 100 µm in diameter of aqueous ammonium iron(III) oxalate solution is photoexcited at 400 nm, and the transient X-ray absorption spectra are measured in the K-edge region of iron, 7.10 - 7.26 keV, using a dual X-ray beam dispersive detection method. Each of the dual beams has the pulse energy of 1.4 µJ, and pump-induced absorbance change on the order of 10(-3) is successfully detected. The photoexcited iron complex exhibits a red shifted iron K-edge with the appearance time constant of 260 fs. The X-ray absorption difference spectra, with and without the pump pulses, are independent of time delay after 1.5 ps up to 100 ps, indicating that the photoexcited species is long-lived.


Assuntos
Lasers , Soluções/análise , Soluções/química , Espectrometria por Raios X/instrumentação , Espectrometria por Raios X/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Doses de Radiação , Soluções/efeitos da radiação
12.
Phys Rev Lett ; 112(18): 187603, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24856723

RESUMO

We present time- and angle-resolved photoemission spectroscopy of trapped electrons near liquid surfaces. Photoemission from the ground state of a hydrated electron at 260 nm is found to be isotropic, while anisotropic photoemission is observed for the excited states of 1,4-diazabicyclo[2,2,2]octane and I- in aqueous solutions. Our results indicate that surface and subsurface species create hydrated electrons in the bulk side. No signature of a surface-bound electron has been observed.


Assuntos
Elétrons , Espectroscopia Fotoeletrônica/métodos , Água/química , Modelos Moleculares , Piperazinas/química , Iodeto de Sódio/química , Propriedades de Superfície
13.
J Chem Phys ; 140(17): 174506, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24811645

RESUMO

The streaming potentials of liquid beams of aqueous NaCl, NaBr, and NaI solutions are measured using soft X-ray, He(I), and laser multiphoton ionization photoelectron spectroscopy. Gaseous molecules are ionized in the vicinity of liquid beams and the photoelectron energy shifts are measured as a function of the distance between the ionization point and the liquid beam. The streaming potentials change their polarity with concentration of electrolytes, from which the singular points of concentration eliminating the streaming potentials are determined. The streaming currents measured in air also vanish at these concentrations. The electron binding energies of liquid water and I(-), Br(-), and Cl(-) anions are revisited and determined more accurately than in previous studies.

14.
J Phys Chem Lett ; 15(8): 2222-2227, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38373287

RESUMO

Ultrafast internal conversion of furan upon deep UV excitation at 200 nm is studied by using extreme ultraviolet time-resolved photoelectron spectroscopy with a time resolution of 15 fs. Ballistic nuclear wavepacket motion from the 1B2(ππ*) state to the ground state is fully observed using 21.7 eV probe pulses. Through the performance of a comparison with the results of electronic structure calculations at the MS(3)-CASPT2(10,10)/cc-pVTZ level of theory, the photoelectron signals from the conical intersection regions are identified.

15.
J Phys Chem Lett ; 14(11): 2758-2763, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36897645

RESUMO

We report ultrafast extreme ultraviolet photoelectron spectroscopy of 6-methyluracil (6mUra) and 5-fluorouracil (5FUra) in the gas phase and 6mUra and 5-fluorouridine in an aqueous environment. In the gas phase, internal conversion (IC) occurs from 1ππ* to 1nπ* states in tens of femtoseconds, followed by intersystem crossing to the 3ππ* state in several picoseconds. In an aqueous solution, 6mUra undergoes IC almost exclusively to the ground state (S0) in about 100 fs, which is essentially the same process as that for unsubstituted uracil, but much faster than that for thymine (5-methyluracil). The different dynamics for C5 and C6 methylation suggest that IC from 1ππ* to S0 is facilitated by out-of-plane (OOP) motion of the C5 substituent. The slow IC for C5-substituted molecules in an aqueous environment is ascribed to the solvent reorganization that is required for this OOP motion to occur. The slow rate for 5FUrd may arise in part from an increased barrier height due to C5 fluorination.

16.
J Phys Chem Lett ; 12(15): 3755-3761, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33844534

RESUMO

We studied nonadiabatic dissociation of CS2 from the 1B2 (1Σu+) state using ultrafast extreme ultraviolet photoelectron spectroscopy. A deep UV (200 nm) laser using the filamentation four-wave mixing method and an extreme UV (21.7 eV) laser using the high-order harmonic generation method were employed to achieve the pump-probe laser cross-correlation time of 48 fs. Spectra measured with a high signal-to-noise ratio revealed clear dynamical features of vibrational wave packet motion in the 1B2 state; its electronic decay to lower electronic state(s) within 630 fs; and dissociation into S(1D2), S(3PJ), and CS fragments within 300 fs. The results suggest that both singlet and triplet dissociation occur via intermediate electronic state(s) produced by electronic relaxation from the 1B2 (1Σu+) state.

17.
Struct Dyn ; 8(3): 034303, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34131579

RESUMO

We describe a magnetic bottle time-of-flight electron spectrometer designed for time-resolved photoemission spectroscopy of a liquid microjet using extreme UV and X-ray radiation. The spectrometer can be easily reconfigured depending on experimental requirements and the energy range of interest. To improve the energy resolution at high electron kinetic energy, a retarding potential can be applied either via a stack of electrodes or retarding mesh grids, and a flight-tube extension can be attached to increase the flight time. A gated electron detector was developed to reject intense parasitic signal from light scattered off the surface of the cylindrically shaped liquid microjet. This detector features a two-stage multiplication with a microchannel plate plus a fast-response scintillator followed by an image-intensified photon detector. The performance of the spectrometer was tested at SPring-8 and SACLA, and time-resolved photoelectron spectra were measured for an ultrafast charge transfer to solvent reaction in an aqueous NaI solution with a 200 nm UV pump pulses from a table-top ultrafast laser and the 5.5 keV hard X-ray probe pulses from SACLA.

18.
J Phys Chem B ; 123(17): 3769-3775, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30827113

RESUMO

We present ultrafast photoelectron spectroscopy of the charge-transfer-to-solvent reaction in a segregated TBAI (tetrabutylammonium iodide) molecular layer in aqueous solution. The reaction times and electron binding energies of transient species vary with TBAI concentration from a very low value of 1 × 10-3 mol L-1, which is in contrast to NaI solution exhibiting no concentration (0.01-1.0 mol L-1) dependence. The result from soft X-ray N(1s) spectroscopy indicates that the photoelectron intensity in TBAI aqueous solution is about 70 times enhanced as compared to that in NH4Cl aqueous solution for an identical salt concentration, and TBA+ drags I- to the surface region. At high TBAI concentrations, electrons released from I- are trapped and held in the TBAI molecular layer owing to electrostatic attraction by TBA+.

19.
J Phys Chem Lett ; 10(16): 4499-4504, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31343891

RESUMO

Ultrafast internal conversion from the first excited state of a solvated electron in water, methanol, and ethanol is investigated using time-resolved photoelectron spectroscopy of liquid microjets and a spectral retrieval method. Photoelectron spectra corrected for inelastic scattering clearly reveal well-separated signals from the excited and ground states, and the latter enables us to analyze the solvation dynamics in the ground state after internal conversion. Measurements with 25 fs time resolution identify a rapid increase in the vertical electron binding energy of the solvated electron owing to nuclear wave packet motions in the excited state and allow us to precisely determine the internal conversion time.

20.
Sci Adv ; 5(8): eaaw6896, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31497644

RESUMO

The electronic energy and dynamics of solvated electrons, the simplest yet elusive chemical species, is of interest in chemistry, physics, and biology. Here, we present the electron binding energy distributions of solvated electrons in liquid water, methanol, and ethanol accurately measured using extreme ultraviolet (EUV) photoelectron spectroscopy of liquids with a single-order high harmonic. The distributions are Gaussian in all cases. Using the EUV and UV photoelectron spectra of solvated electrons, we succeeded in retrieving sharp electron kinetic energy distributions from the spectra broadened and energy shifted by inelastic scattering in liquids, overcoming an obstacle in ultrafast UV photoelectron spectroscopy of liquids. The method is demonstrated for the benchmark systems of charge transfer to solvent reaction and ultrafast internal conversion of hydrated electron from the first excited state.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa