Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Metab ; 114(2): 217-25, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25092414

RESUMO

Recombinant human acid sphingomyelinase (rhASM) is being developed as an enzyme replacement therapy for patients with acid sphingomyelinase deficiency (Niemann-Pick disease types A and B), which causes sphingomyelin to accumulate in lysosomes. In the acid sphingomyelinase knock-out (ASMKO) mouse, intravenously administered rhASM reduced tissue sphingomyelin levels in a dose-dependent manner. When rhASM was administered to normal rats, mice, and dogs, no toxicity was observed up to a dose of 30mg/kg. However, high doses of rhASM≥10mg/kg administered to ASMKO mice resulted in unexpected toxicity characterized by cardiovascular shock, hepatic inflammation, adrenal hemorrhage, elevations in ceramide and cytokines (especially IL-6, G-CSF, and keratinocyte chemoattractant [KC]), and death. The toxicity could be completely prevented by the administration of several low doses (3mg/kg) of rhASM prior to single or repeated high doses (≥20mg/kg). These results suggest that the observed toxicity involves the rapid breakdown of large amounts of sphingomyelin into ceramide and/or other toxic downstream metabolites, which are known signaling molecules with cardiovascular and pro-inflammatory effects. Our results suggest that the nonclinical safety assessment of novel therapeutics should include the use of specific animal models of disease whenever feasible.


Assuntos
Cães , Terapia de Reposição de Enzimas , Doença de Niemann-Pick Tipo A/tratamento farmacológico , Esfingomielina Fosfodiesterase/administração & dosagem , Esfingomielina Fosfodiesterase/deficiência , Administração Intravenosa , Glândulas Suprarrenais , Animais , Ceramidas/sangue , Ceramidas/metabolismo , Citocinas/sangue , Citocinas/imunologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Fígado/metabolismo , Fígado/patologia , Lisossomos/metabolismo , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença de Niemann-Pick Tipo A/metabolismo , Ratos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/toxicidade , Esfingomielina Fosfodiesterase/toxicidade , Esfingomielinas/metabolismo
2.
Biotechnol Bioeng ; 109(12): 3018-29, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22729761

RESUMO

In the current environment of diverse product pipelines, rapidly fluctuating market demands and growing competition from biosimilars, biotechnology companies are increasingly driven to develop innovative solutions for highly flexible and cost-effective manufacturing. To address these challenging demands, integrated continuous processing, comprised of high-density perfusion cell culture and a directly coupled continuous capture step, can be used as a universal biomanufacturing platform. This study reports the first successful demonstration of the integration of a perfusion bioreactor and a four-column periodic counter-current chromatography (PCC) system for the continuous capture of candidate protein therapeutics. Two examples are presented: (1) a monoclonal antibody (model of a stable protein) and (2) a recombinant human enzyme (model of a highly complex, less stable protein). In both cases, high-density perfusion CHO cell cultures were operated at a quasi-steady state of 50-60 × 10(6) cells/mL for more than 60 days, achieving volumetric productivities much higher than current perfusion or fed-batch processes. The directly integrated and automated PCC system ran uninterrupted for 30 days without indications of time-based performance decline. The product quality observed for the continuous capture process was comparable to that for a batch-column operation. Furthermore, the integration of perfusion cell culture and PCC led to a dramatic decrease in the equipment footprint and elimination of several non-value-added unit operations, such as clarification and intermediate hold steps. These findings demonstrate the potential of integrated continuous bioprocessing as a universal platform for the manufacture of various kinds of therapeutic proteins.


Assuntos
Reatores Biológicos , Biotecnologia/instrumentação , Biotecnologia/métodos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Proteínas Recombinantes/biossíntese , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Células CHO , Contagem de Células , Distribuição Contracorrente , Cricetinae , Cricetulus , Enzimas/biossíntese , Enzimas/química , Enzimas/isolamento & purificação , Enzimas/metabolismo , Humanos , Modelos Biológicos , Perfusão , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
3.
Biotechnol Bioeng ; 108(11): 2611-22, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21618473

RESUMO

Here we describe a method that couples flow cytometric detection with the attenuated translation of a reporter protein to enable efficient selection of CHO clones producing high levels of recombinant proteins. In this system, a small cell surface reporter protein is expressed from an upstream open reading frame utilizing a non-AUG initiation (alternate start) codon. Due to the low translation initiation efficiency of this alternate start codon, the majority of translation initiation events occur at the first AUG of the downstream open reading frame encoding the recombinant protein of interest. While translation of the reporter is significantly reduced, the levels are sufficient for detection using flow cytometric methods and, in turn, predictive of protein expression from the gene of interest since both ORFs are translated from the same mRNA. Using this system, CHO cells have been sorted to obtain enriched pools producing significantly higher levels of recombinant proteins than the starting cell population and clones with significantly better productivity than those generated from limiting dilution cloning. This method also serves as an effective screening tool during clone expansion to enable resources to be focused solely on clones with both high and stable expression.


Assuntos
Códon de Iniciação/genética , Proteínas Recombinantes/biossíntese , Animais , Células CHO , Técnicas de Cultura de Células , Cricetinae , Cricetulus , Citometria de Fluxo , Perfilação da Expressão Gênica/métodos , Genes Reporter , Programas de Rastreamento/métodos , Proteínas Recombinantes/genética
4.
Mol Genet Metab ; 97(1): 35-42, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19231265

RESUMO

Systemic administration of recombinant acid sphingomyelinase (rhASM) into ASM deficient mice (ASMKO) results in hydrolysis of the abnormal storage of sphingomyelin in lysosomes of the liver, spleen and lung. However, the efficiency with which the substrate is cleared from the lung, particularly the alveolar macrophages, appears to be lower than from the other visceral tissues. To determine if delivery of rhASM into the air spaces of the lung could enhance clearance of pulmonary sphingomyelin, enzyme was administered to ASMKO mice by intranasal instillation. Treatment resulted in a significant and dose-dependent reduction in sphingomyelin levels in the lung. Concomitant with this reduction in substrate levels was a decrease in the amounts of the pro-inflammatory cytokine, MIP-1alpha, in the bronchoalveolar lavage fluids and an improvement in lung pathology. Maximal reduction of lung sphingomyelin levels was observed at 7 days post-treatment. However, reaccumulation of the substrate was noted starting at day 14 suggesting that repeated treatments will be necessary to effect a sustained reduction in sphingomyelin levels. In addition to reducing the storage abnormality in the lung, intranasal delivery of rhASM also resulted in clearance of the substrate from the liver and spleen. Hence, pulmonary administration of rhASM may represent an alternative route of delivery to address the visceral pathology associated with ASM deficiency.


Assuntos
Pulmão/metabolismo , Lisossomos/metabolismo , Doenças de Niemann-Pick/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Esfingomielina Fosfodiesterase/administração & dosagem , Esfingomielina Fosfodiesterase/uso terapêutico , Esfingomielinas/metabolismo , Administração Intranasal , Animais , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Feminino , Humanos , Cinética , Fígado/metabolismo , Fígado/patologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças de Niemann-Pick/enzimologia , Doenças de Niemann-Pick/metabolismo , Doenças de Niemann-Pick/patologia , Proteínas Recombinantes/administração & dosagem , Esfingomielina Fosfodiesterase/genética , Baço/metabolismo , Baço/patologia
5.
Biotechnol Prog ; 23(2): 465-72, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17261021

RESUMO

Flow cytometry was partnered with a nonfluorescent reporter protein for rapid, early stage identification of clones producing high levels of a therapeutic protein. A cell surface protein, not normally expressed on CHO cells, is coexpressed, as a reporter, with the therapeutic protein and detected using a fluorescently labeled antibody. The genes encoding the reporter protein and the therapeutic protein are linked by an IRES, so that they are transcribed in the same mRNA but are translated independently. Since they each arise from a common mRNA, the reporter protein's expression level accurately predicts the relative expression level of the therapeutic protein for each clone. This method provides an effective process for generating recombinant cell lines producing high levels of therapeutic proteins, with the benefits of rapid and accurate 96-well plate clone screening and elimination of unstable clones at an earlier stage in the development process. Furthermore, because this method does not rely on the availability of an antibody specific for the therapeutic protein being expressed, it can be easily implemented into any cell line development process.


Assuntos
Antígenos CD20/análise , Células CHO/citologia , Células CHO/imunologia , Separação Celular/métodos , Clonagem Molecular/métodos , Citometria de Fluxo/métodos , Recombinação Genética/fisiologia , Animais , Células CHO/classificação , Cricetinae , Cricetulus
6.
Exp Neurol ; 215(2): 349-57, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19059399

RESUMO

Niemann-Pick A (NPA) disease is a lysosomal storage disorder (LSD) caused by a deficiency in acid sphingomyelinase (ASM) activity. Previously, we showed that the storage pathology in the ASM knockout (ASMKO) mouse brain could be corrected by intracerebral injections of cell, gene and protein based therapies. However, except for instances where distal areas were targeted with viral vectors, correction of lysosomal storage pathology was typically limited to a region within a few millimeters from the injection site. As NPA is a global neurometabolic disease, the development of delivery strategies that maximize the distribution of the enzyme throughout the CNS is likely necessary to arrest or delay progression of the disease. To address this challenge, we evaluated the effectiveness of intracerebroventricular (ICV) delivery of recombinant human ASM into ASMKO mice. Our findings showed that ICV delivery of the enzyme led to widespread distribution of the hydrolase throughout the CNS. Moreover, a significant reduction in lysosomal accumulation of sphingomyelin was observed throughout the brain and also within the spinal cord and viscera. Importantly, we demonstrated that repeated ICV infusions of ASM were effective at improving the disease phenotype in the ASMKO mouse as indicated by a partial alleviation of the motor abnormalities. These findings support the continued exploration of ICV delivery of recombinant lysosomal enzymes as a therapeutic modality for LSDs such as NPA that manifests substrate accumulation within the CNS.


Assuntos
Doença de Niemann-Pick Tipo A/tratamento farmacológico , Esfingomielina Fosfodiesterase/administração & dosagem , Animais , Encéfalo/metabolismo , Colesterol/metabolismo , Modelos Animais de Doenças , Humanos , Injeções Intraventriculares/métodos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Doença de Niemann-Pick Tipo A/genética , Doença de Niemann-Pick Tipo A/patologia , Esfingomielina Fosfodiesterase/deficiência , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Fatores de Tempo
7.
J Biol Chem ; 278(35): 32744-52, 2003 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-12801930

RESUMO

One form of Niemann-Pick disease is caused by a deficiency in the enzymatic activity of acid sphingomyelinase. During efforts to develop an enzyme replacement therapy based on a recombinant form of human acid sphingomyelinase (rhASM), purified preparations of the recombinant enzyme were found to have substantially increased specific activity if cell harvest media were stored for several weeks at -20 degrees C prior to purification. This increase in activity was found to correlate with the loss of the single free thiol on rhASM, suggesting the involvement of a cysteine residue. It was demonstrated that a variety of chemical modifications of the free cysteine on rhASM all result in substantial activation of the enzyme, and the modified cysteine responsible for this activation was shown to be the C-terminal residue (Cys629). Activation was also achieved by copper-promoted dimerization of rhASM (via cysteine) and by C-terminal truncation using carboxypeptidase Y. The role of the C-terminal cysteine in activation was confirmed by creating mutant forms of rhASM in which this residue was either deleted or replaced by a serine, with both forms having substantially higher specific activity than wild-type rhASM. These results indicate that purified rhASM can be activated in vitro by loss of the free thiol on the C-terminal cysteine via chemical modification, dimerization, or deletion of this amino acid residue. This method of activation is similar to the cysteine switch mechanism described previously for matrix metalloproteinases and could represent a means of posttranslational regulation of ASM activity in vivo.


Assuntos
Cisteína/química , Ativação Enzimática , Esfingomielina Fosfodiesterase/metabolismo , Animais , Células CHO , Carboxipeptidases/química , Catepsina A , Cobre/química , Cricetinae , Dimerização , Relação Dose-Resposta a Droga , Deleção de Genes , Humanos , Cinética , Espectrometria de Massas , Modelos Biológicos , Mutagênese Sítio-Dirigida , Mutação , Mapeamento de Peptídeos , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Compostos de Sulfidrila/química , Temperatura , Fatores de Tempo , Transfecção , Zinco/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa