RESUMO
BACKGROUND: Monkeypox is a poorly described emerging zoonosis endemic to Central and Western Africa. METHODS: Using surveillance data from Tshuapa Province, Democratic Republic of the Congo during 2011-2015, we evaluated differences in incidence, exposures, and clinical presentation of polymerase chain reaction-confirmed cases by sex and age. RESULTS: We report 1057 confirmed cases. The average annual incidence was 14.1 per 100 000 (95% confidence interval, 13.3-15.0). The incidence was higher in male patients (incidence rate ratio comparing males to females, 1.21; 95% confidence interval, 1.07-1.37), except among those 20-29 years old (0.70; .51-.95). Females aged 20-29 years also reported a high frequency of exposures (26.2%) to people with monkeypox-like symptoms.The highest incidence was among 10-19-year-old males, the cohort reporting the highest proportion of animal exposures (37.5%). The incidence was lower among those presumed to have received smallpox vaccination than among those presumed unvaccinated. No differences were observed by age group in lesion count or lesion severity score. CONCLUSIONS: Monkeypox incidence was twice that reported during 1980-1985, an increase possibly linked to declining immunity provided by smallpox vaccination. The high proportion of cases attributed to human exposures suggests changing exposure patterns. Cases were distributed across age and sex, suggesting frequent exposures that follow sociocultural norms.
Assuntos
Mpox , Adolescente , Adulto , Criança , República Democrática do Congo/epidemiologia , Feminino , Humanos , Masculino , Mpox/diagnóstico , Mpox/epidemiologia , Monkeypox virus/genética , Vacina Antivariólica , Adulto JovemRESUMO
OBJECTIVE: To describe varicella cases in Tshuapa Province of the Democratic Republic of the Congo identified during monkeypox surveillance. METHODS: Demographic, clinical and epidemiological data were collected from each suspected monkeypox case 2009-2014. Samples were tested by PCR for both Orthopoxviruses and varicella-zoster virus (VZV); a subset of VZV-positive samples was genotyped. We defined a varicella case as a rash illness with laboratory-confirmed VZV. RESULTS: There were 366 varicella cases were identified; 66% were ≤19 years old. Most patients had non-typical varicella rash with lesions reported as the same size and stage of evolution (86%), deep and profound (91%), on palms of hands and/or soles of feet (86%) and not itchy (49%). Many had non-typical signs and symptoms, such as lymphadenopathy (70%) and sensitivity to light (23%). A higher proportion of persons aged ≥20 years than persons aged ≤19 years had ≥50 lesions (79% vs. 65%, P = 0.007) and were bedridden (15% vs. 9%, P = 0.056). All VZV isolates genotyped from 79 varicella cases were clade 5. During the surveillance period, one possible VZV-related death occurred in a 7-year-old child. CONCLUSIONS: A large proportion of patients presented with non-typical varicella rash and clinical signs and symptoms, highlighting challenges identifying varicella in an area with endemic monkeypox. Continued surveillance and laboratory diagnosis will help in rapid identification and control of both monkeypox and varicella and improve our understanding of varicella epidemiology in Africa.
OBJECTIF: Décrire les cas de varicelle identifiés dans la province de Tshuapa en République Démocratique du Congo (RDC) au cours de la surveillance de la variole du singe (monkeypox). MÉTHODES: Des données démographiques, cliniques et épidémiologiques ont été recueillies pour chaque cas présumé de monkeypox entre 2009 et 2014. Les échantillons ont été testés par PCR pour les orthopoxvirus et le virus varicelle-zona (VZV); un sous-ensemble d'échantillons positifs au VZV a été génotypé. Nous avons défini un cas de varicelle comme une éruption cutanée avec confirmation du VZV en laboratoire. RÉSULTATS: 366 cas de varicelle ont été identifiés; 66% avaient 19 ans ou moins. La plupart des patients présentaient une éruption non typique de varicelle avec des lésions rapportées de la même taille et le même stade d'évolution (86%), profonds (91%), sur la paume des mains et/ou la plante des pieds (86%), sans démangeaisons (49%). Nombre d'entre eux présentaient des signes et des symptômes inhabituels, tels qu'une adénopathie lymphatique (70%) et une sensibilité à la lumière (23%). Une proportion plus élevée de personnes âgées de 20 ans et plus que de personnes âgées de 19 ans et moins avaient 50 lésions ou plus (79% contre 65%, p = 0,007) et étaient alitées (15% contre 9%; p = 0,056). Tous les isolats de VZV génotypés chez 79 cas de varicelle appartenaient au clade 5. Au cours de la période de surveillance, un décès possible lié au VZV est survenu chez un enfant de 7 ans. CONCLUSIONS: Une forte proportion de patients ont présenté une éruption de varicelle ainsi que des signes et symptômes cliniques non typiques, soulignant les difficultés rencontrées pour identifier la varicelle dans une zone endémique pour le monkeypox. Une surveillance continue et des diagnostics de laboratoire aideront à identifier et à contrôler rapidement le monkeypox et la varicelle et à améliorer notre compréhension sur l'épidémiologie de la varicelle en Afrique.
Assuntos
Varicela/diagnóstico , Varicela/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , República Democrática do Congo/epidemiologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mpox/diagnóstico , Mpox/epidemiologia , Reação em Cadeia da Polimerase , Adulto JovemRESUMO
Simian T-lymphotropic virus 1 (STLV-1) enters human populations through contact with nonhuman primate (NHP) bushmeat. We tested whether differences in the extent of contact with STLV-1-infected NHP bushmeat foster regional differences in prevalence of human T-lymphotropic virus 1 (HTLV-1). Using serological and PCR assays, we screened humans and NHPs at two Sub-Saharan African sites where subsistence hunting was expected to be less (Taï region, Côte d'Ivoire [CIV]) or more (Bandundu region, Democratic Republic of the Congo [DRC]) developed. Only 0.7% of human participants were infected with HTLV-1 in CIV (n = 574), and 1.3% of humans were infected in DRC (n = 302). Two of the Ivorian human virus sequences were closely related to simian counterparts, indicating ongoing zoonotic transmission. Multivariate analysis of human demographic parameters and behavior confirmed that participants from CIV were less often exposed to NHPs than participants from DRC through direct contact, e.g., butchering. At the same time, numbers of STLV-1-infected NHPs were higher in CIV (39%; n = 111) than in DRC (23%; n = 39). We conclude that similar ultimate risks of zoonotic STLV-1 transmission-defined as the product of prevalence in local NHP and human rates of contact to fresh NHP carcasses-contribute to the observed comparable rates of HTLV-1 infection in humans in CIV and DRC. We found that young adult men and mature women are most likely exposed to NHPs at both sites. In view of the continued difficulties in controlling zoonotic disease outbreaks, the identification of such groups at high risk of NHP exposure may guide future prevention efforts.IMPORTANCE Multiple studies report a high risk for zoonotic transmission of blood-borne pathogens like retroviruses through contact with NHPs, and this risk seems to be particularly high in tropical Africa. Here, we reveal high levels of exposure to NHP bushmeat in two regions of Western and Central tropical Africa. We provide evidence for continued zoonotic origin of HTLV-1 in humans at CIV, and we found that young men and mature women represent risk groups for zoonotic transmission of pathogens from NHPs. Identifying such risk groups can contribute to mitigation of not only zoonotic STLV-1 transmission but also transmission of any blood-borne pathogen onto humans in Sub-Saharan Africa.
Assuntos
Infecções por Deltaretrovirus/transmissão , Infecções por HTLV-I/epidemiologia , Carne/virologia , Primatas/virologia , Vírus Linfotrópico T Tipo 1 de Símios/isolamento & purificação , Zoonoses , Adulto , África Central , África do Norte/epidemiologia , Animais , Animais Selvagens/virologia , Côte d'Ivoire/epidemiologia , Infecções por Deltaretrovirus/epidemiologia , Infecções por Deltaretrovirus/prevenção & controle , Infecções por Deltaretrovirus/virologia , República Democrática do Congo/epidemiologia , Surtos de Doenças/prevenção & controle , Feminino , Infecções por HTLV-I/prevenção & controle , Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/isolamento & purificação , Humanos , Masculino , Filogenia , Prevalência , Adulto Jovem , Zoonoses/epidemiologiaRESUMO
UNLABELLED: It has long been hypothesized that polyomaviruses (PyV; family Polyomaviridae) codiverged with their animal hosts. In contrast, recent analyses suggested that codivergence may only marginally influence the evolution of PyV. We reassess this question by focusing on a single lineage of PyV infecting hominine hosts, the Merkel cell polyomavirus (MCPyV) lineage. By characterizing the genetic diversity of these viruses in seven African great ape taxa, we show that they exhibit very strong host specificity. Reconciliation analyses identify more codivergence than noncodivergence events. In addition, we find that a number of host and PyV divergence events are synchronous. Collectively, our results support codivergence as the dominant process at play during the evolution of the MCPyV lineage. More generally, our results add to the growing body of evidence suggesting an ancient and stable association of PyV and their animal hosts. IMPORTANCE: The processes involved in viral evolution and the interaction of viruses with their hosts are of great scientific interest and public health relevance. It has long been thought that the genetic diversity of double-stranded DNA viruses was generated over long periods of time, similar to typical host evolutionary timescales. This was also hypothesized for polyomaviruses (family Polyomaviridae), a group comprising several human pathogens, but this remains a point of controversy. Here, we investigate this question by focusing on a single lineage of polyomaviruses that infect both humans and their closest relatives, the African great apes. We show that these viruses exhibit considerable host specificity and that their evolution largely mirrors that of their hosts, suggesting that codivergence with their hosts played a major role in their diversification. Our results provide statistical evidence in favor of an association of polyomaviruses and their hosts over millions of years.
Assuntos
Evolução Molecular , Variação Genética , Especificidade de Hospedeiro , Poliomavírus das Células de Merkel/classificação , Poliomavírus das Células de Merkel/genética , Infecções por Polyomavirus/veterinária , Infecções Tumorais por Vírus/veterinária , África , Animais , Hominidae , Poliomavírus das Células de Merkel/isolamento & purificação , Poliomavírus das Células de Merkel/fisiologia , Infecções por Polyomavirus/virologia , Infecções Tumorais por Vírus/virologiaRESUMO
A >600% increase in monkeypox cases occurred in the Bokungu Health Zone of the Democratic Republic of the Congo during the second half of 2013; this increase prompted an outbreak investigation. A total of 104 possible cases were reported from this health zone; among 60 suspected cases that were tested, 50 (48.1%) cases were confirmed by laboratory testing, and 10 (9.6%) tested negative for monkeypox virus (MPXV) infection. The household attack rate (i.e., rate of persons living with an infected person that develop symptoms of MPXV infection) was 50%. Nine families showed >1 transmission event, and >6 transmission events occurred within this health zone. Mean incubation period was 8 days (range 4-14 days). The high attack rate and transmission observed in this study reinforce the importance of surveillance and rapid identification of monkeypox cases. Community education and training are needed to prevent transmission of MPXV infection during outbreaks.
RESUMO
Human adenoviruses (HAdV; species HAdV-A to -G) are highly prevalent in the human population, and represent an important cause of morbidity and, to a lesser extent, mortality. Recent studies have identified close relatives of these viruses in African great apes, suggesting that some HAdV may be of zoonotic origin. We analyzed more than 800 fecal samples from wild African great apes and humans to further investigate the evolutionary history and zoonotic potential of hominine HAdV. HAdV-B and -E were frequently detected in wild gorillas (55%) and chimpanzees (25%), respectively. Bayesian ancestral host reconstruction under discrete diffusion models supported a gorilla and chimpanzee origin for these viral species. Host switches were relatively rare along HAdV evolution, with about ten events recorded in 4.5 My. Despite presumably rare direct contact between sympatric populations of the two species, transmission events from gorillas to chimpanzees were observed, suggesting that habitat and dietary overlap may lead to fecal-oral cross-hominine transmission of HAdV. Finally, we determined that two independent HAdV-B transmission events to humans occurred more than 100,000 years ago. We conclude that HAdV-B circulating in humans are of zoonotic origin and have probably affected global human health for most of our species lifetime.
Assuntos
Infecções por Adenoviridae , Adenoviridae , Evolução Molecular , Hominidae/virologia , Adenoviridae/genética , Adenoviridae/patogenicidade , Infecções por Adenoviridae/genética , Infecções por Adenoviridae/transmissão , Animais , Humanos , Especificidade da Espécie , Zoonoses/genética , Zoonoses/transmissãoRESUMO
BACKGROUND: Human adenoviruses of species D (HAdV-D) can be associated with acute respiratory illness, epidemic keratoconjunctivitis, and gastroenteritis, but subclinical HAdV-D infections with prolonged shedding have also been observed, particularly in immunocompromised hosts. To expand knowledge on HAdV-D in Sub-Saharan Africa, we investigated the prevalence, epidemiology and pathogenic potential of HAdV-D in humans from rural areas of 4 Sub-Saharan countries, Côte d'Ivoire (CI), Democratic Republic of the Congo (DRC), Central African Republic (CAR) and Uganda (UG). METHODS: Stool samples were collected from 287 people living in rural regions in CI, DRC, CAR and UG. HAdV-D prevalence and diversity were determined by PCR and sequencing. A gene block, spanning the genes pV to hexon, was used for analysis of genetic distance. Correlation between adenovirus infection and disease symptoms, prevalence differences, and the effect of age and gender on infection status were analyzed with cross tables and logistic regression models. RESULTS: The prevalence of HAdV-D in the investigated sites was estimated to be 66% in CI, 48% in DRC, 28% in CAR (adults only) and 65% in UG (adults only). Younger individuals were more frequently infected than adults; there was no difference in HAdV-D occurrence between genders. No correlation could be found between HAdV-D infection and clinical symptoms. Highly diverse HAdV-D sequences were identified, among which a number are likely to stand for novel types. CONCLUSIONS: HAdV-D was detected with a high prevalence in study populations of 4 Sub-Saharan countries. The genetic diversity of the virus was high and further investigations are needed to pinpoint pathological potential of each of the viruses. High diversity may also favor the emergence of recombinants with altered tropism and pathogenic properties.
Assuntos
Infecções por Adenoviridae/epidemiologia , Infecções por Adenoviridae/virologia , Adenovírus Humanos/classificação , Adenovírus Humanos/isolamento & purificação , Variação Genética , Adenovírus Humanos/genética , Adolescente , Adulto , África Subsaariana/epidemiologia , Idoso , Criança , Pré-Escolar , DNA Viral/química , DNA Viral/genética , Fezes/virologia , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Prevalência , População Rural , Análise de Sequência de DNA , Voluntários , Adulto JovemRESUMO
Incidence of human monkeypox (mpox) has been increasing in West and Central Africa, including in the Democratic Republic of Congo (DRC), where monkeypox virus (MPXV) is endemic. Most estimates of the pathogen's transmissibility in the DRC are based on data from the 1980s. Amid the global 2022 mpox outbreak, new estimates are needed to characterize the virus' epidemic potential and inform outbreak control strategies. We used the R package vimes to identify clusters of laboratory-confirmed mpox cases in Tshuapa Province, DRC. Cases with both temporal and spatial data were assigned to clusters based on the disease's serial interval and spatial kernel. We used the size of the clusters to infer the effective reproduction number, Rt, and the rate of zoonotic spillover of MPXV into the human population. Out of 1,463 confirmed mpox cases reported in Tshuapa Province between 2013 and 2017, 878 had both date of symptom onset and a location with geographic coordinates. Results include an estimated Rt of 0.82 (95% CI: 0.79-0.85) and a rate of 132 (95% CI: 122-143) spillovers per year assuming a reporting rate of 25%. This estimate of Rt is larger than most previous estimates. One potential explanation for this result is that Rt could have increased in the DRC over time owing to declining population-level immunity conferred by smallpox vaccination, which was discontinued around 1982. Rt could be overestimated if our assumption of one spillover event per cluster does not hold. Our results are consistent with increased transmissibility of MPXV in Tshuapa Province.
Assuntos
Mpox , Animais , Humanos , Mpox/epidemiologia , República Democrática do Congo/epidemiologia , Monkeypox virus , Zoonoses/epidemiologia , Surtos de DoençasRESUMO
Recent enhanced monkeypox (MPX) surveillance in the Democratic Republic of Congo, where MPX is endemic, has uncovered multiple cases of MPX and varicella zoster virus (VZV) coinfections. The purpose of this study was to verify if coinfections occur and to characterize the clinical nature of these cases. Clinical, epidemiological, and laboratory results were used to investigate MPX/VZV coinfections. A coinfection was defined as a patient with at least one Orthopoxvirus/MPX-positive sample and at least one VZV-positive sample within the same disease event. Between September 2009 and April 2014, 134 of the 1,107 (12.1%) suspected MPX cases were confirmed as MPX/VZV coinfections. Coinfections were more likely to report symptoms than VZV-alone cases and less likely than MPX-alone cases. Significantly higher lesion counts were observed for coinfection cases than for VZV-alone but less than MPX-alone cases. Discernible differences in symptom and rash severity were detected for coinfection cases compared with those with MPX or VZV alone. Findings indicate infection with both MPX and VZV could modulate infection severity. Collection of multiple lesion samples allows for the opportunity to detect coinfections. As this program continues, it will be important to continue these procedures to assess variations in the proportion of coinfected cases over time.
Assuntos
Coinfecção/epidemiologia , Coinfecção/virologia , Herpes Zoster/epidemiologia , Herpesvirus Humano 3/genética , Monkeypox virus/genética , Mpox/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , República Democrática do Congo/epidemiologia , Monitoramento Epidemiológico , Feminino , Herpesvirus Humano 3/isolamento & purificação , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Monkeypox virus/isolamento & purificação , Adulto JovemRESUMO
BACKGROUND: The real-time generation of information about pathogen genomes has become a vital goal for transmission analysis and characterisation in rapid outbreak responses. In response to the recently established genomic capacity in the Democratic Republic of the Congo, we explored the real-time generation of genomic information at the start of the 2018 Ebola virus disease (EVD) outbreak in North Kivu Province. METHODS: We used targeted-enrichment sequencing to produce two coding-complete Ebola virus genomes 5 days after declaration of the EVD outbreak in North Kivu. Subsequent sequencing efforts yielded an additional 46 genomes. Genomic information was used to assess early transmission, medical countermeasures, and evolution of Ebola virus. FINDINGS: The genomic information demonstrated that the EVD outbreak in the North Kivu and Ituri Provinces was distinct from the 2018 EVD outbreak in Équateur Province of the Democratic Republic of the Congo. Primer and probe mismatches to Ebola virus were identified in silico for all deployed diagnostic PCR assays, with the exception of the Cepheid GeneXpert GP assay. INTERPRETATION: The first two coding-complete genomes provided actionable information in real-time for the deployment of the rVSVΔG-ZEBOV-GP Ebola virus envelope glycoprotein vaccine, available therapeutics, and sequence-based diagnostic assays. Based on the mutations identified in the Ebola virus surface glycoprotein (GP12) observed in all 48 genomes, deployed monoclonal antibody therapeutics (mAb114 and ZMapp) should be efficacious against the circulating Ebola virus variant. Rapid Ebola virus genomic characterisation should be included in routine EVD outbreak response procedures to ascertain efficacy of medical countermeasures. FUNDING: Defense Biological Product Assurance Office.
Assuntos
Anticorpos Monoclonais/genética , Antivirais/uso terapêutico , Vacinas contra Ebola/uso terapêutico , Ebolavirus/genética , Genômica , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/epidemiologia , República Democrática do Congo/epidemiologia , Surtos de Doenças , Humanos , Contramedidas Médicas , Estudos RetrospectivosAssuntos
Insetos Vetores/microbiologia , Infestações por Piolhos/parasitologia , Ftirápteros/microbiologia , Peste/transmissão , Yersinia pestis/isolamento & purificação , Animais , Bartonella quintana/isolamento & purificação , República Democrática do Congo/epidemiologia , Epidemias , Humanos , Infestações por Piolhos/epidemiologia , Tipagem Molecular , Peste/epidemiologia , Yersinia pestis/genéticaRESUMO
INTRODUCTION: The establishment of the influenza sentinel surveillance system in Kinshasa, Bas Congo, Maniema, Katanga, and Kasai Provinces allowed generation of important data on the molecular epidemiology of human influenza viruses circulating in the Democratic Republic of Congo (DRC). However, some challenges still exist, including the need for extending the influenza surveillance to more provinces. This study describes the pattern of influenza virus circulating in DRC during 2015. METHODOLOGY: Nasopharyngeal swabs were collected from January to December 2015 from outpatients with influenza-like illness (ILI) and in all hospitalized patients with Severe Acute Respiratory Infection (SARI). Molecular analysis was done to determine influenza type and subtype at the National Reference Laboratory (NRL) in Kinshasa using real time reverse transcription-polymerase chain reaction (rRT-PCR). Analysis of antiviral resistance by enzyme inhibition assay and nucleotide sequencing was performed by the Collaborating center in the USA (CDC, Atlanta). RESULTS: Out of 2,376 nasopharyngeal swabs collected from patients, 218 (9.1%) were positive for influenza virus. Among the positive samples, 149 were characterized as influenza virus type A (Flu A), 67 as type B (Flu B) and 2 mixed infections (Flu A and B). Flu A subtypes detected were H3N2 and H1N1. The Yamagata strain of Flu B was detected among patients in the country. Individuals aged between 5 and 14 years accounted for the largest age group affected by influenza virus. All influenza viruses detected were found to be sensitive to antiviral drugs such as oseltamivar, zanamivir, peramivir and laninamivar. CONCLUSION: The present study documented the possible involvement of both circulation of Flu A and B viruses in human respiratory infection in certain DRC provinces during 2015. This study emphasises the need to extend the influenza surveillance to other provinces for a better understanding of the epidemiology of influenza in DRC. It is envisioned that such a system would lead to improved disease control and patient management.
Assuntos
Influenza Humana/epidemiologia , Influenza Humana/virologia , Adolescente , Adulto , Criança , Pré-Escolar , República Democrática do Congo/epidemiologia , Farmacorresistência Viral/genética , Feminino , Humanos , Lactente , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Vírus da Influenza B/classificação , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Filogenia , Vigilância de Evento Sentinela , Adulto JovemRESUMO
AbstractInbred mice are commonly used to test candidate malaria vaccines, but have been unreliable for predicting efficacy in humans. To establish a more rigorous animal model, we acquired African woodland thicket rats of the genus Grammomys, the natural hosts for Plasmodium berghei. Thicket rats were acquired and identified as Grammomys surdaster by skull and teeth measurements and mitochondrial DNA genotyping. Herein, we demonstrate that thicket rats are highly susceptible to infection by P. berghei, and moderately susceptible to Plasmodium yoelii and Plasmodium chabaudi: 1-2 infected mosquito bites or 25-100 sporozoites administered by intravenous injection consistently resulted in patent parasitemia with P. berghei, and resulted in patent parasitemia with P. yoelii and P. chabaudi strains for at least 50% of animals. We then assessed efficacy of whole-organism vaccines to induce sterile immunity, and compared the thicket rat model to conventional mouse models. Using P. berghei ANKA radiation-attenuated sporozoites, and P. berghei ANKA and P. yoelii chemoprophylaxis vaccination approaches, we found that standard doses of vaccine sufficient to protect laboratory mice for a long duration against malaria challenge, are insufficient to protect thicket rats, which require higher doses of vaccine to achieve even short-term sterile immunity. Thicket rats may offer a more stringent and pertinent model for evaluating whole-organism vaccines.
Assuntos
Modelos Animais de Doenças , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Murinae/parasitologia , Plasmodium berghei/fisiologia , Animais , Anopheles/parasitologia , Feminino , Malária/parasitologia , Camundongos , Camundongos EndogâmicosRESUMO
Since the eradication of smallpox and the subsequent discontinuation of the worldwide smallpox vaccination program, other Orthopoxviruses beside Variola virus have been increasingly representing a risk to human health. To investigate the extent of natural contact with Orthopoxviruses and possible demographic risk factors for such an exposure, we performed a cross-sectional serosurvey of anti-Orthopoxvirus IgG antibodies in West and Central Africa. To this end, people living in forest regions in Côte d'Ivoire (CIV, n = 737) and the Democratic Republic of the Congo (COD, n = 267) were assigned into groups according to their likely smallpox vaccination status. The overall prevalence of anti-Orthopoxvirus antibodies was 51% in CIV and 60% in COD. High rates of seropositivity among the vaccinated part of the population (80% in CIV; 96% COD) indicated a long-lasting post vaccination immune response. In non-vaccinated participants, seroprevalences of 19% (CIV) and 26% (COD) indicated regular contact with Orthopoxviruses. Multivariate logistic regression revealed that the antibody level in the vaccinated part of the population was higher in COD than in CIV, increased with age and was slightly higher in females than males. In the unvaccinated part of the population none of these factors influenced antibody level significantly. In conclusion, our results confirm expectedly high anti-Orthopoxvirus seroprevalences in previously smallpox-vaccinated people living in CIV and the COD but more unexpectedly imply regular contact with Orthopoxviruses both in Western and Central Africa, even in the absence of recognized outbreaks.
Assuntos
Anticorpos Antivirais/sangue , Imunoglobulina G/sangue , Orthopoxvirus/imunologia , Infecções por Poxviridae/epidemiologia , Estudos Soroepidemiológicos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Côte d'Ivoire/epidemiologia , Estudos Transversais , República Democrática do Congo/epidemiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Infecções por Poxviridae/imunologia , Fatores de Risco , Varíola/prevenção & controle , Vacina Antivariólica/administração & dosagem , Vacina Antivariólica/imunologia , Adulto Jovem , ZoonosesRESUMO
BACKGROUND: Human monkeypox (MPX) occurs at appreciable rates in the Democratic Republic of Congo (DRC). Infection with varicella zoster virus (VZV) has a similar presentation to that of MPX, and in areas where MPX is endemic these two illnesses are commonly mistaken. This study evaluated the diagnostic utility of two surveillance case definitions for MPX and specific clinical characteristics associated with laboratory-confirmed MPX cases. METHODOLOGY/PRINCIPAL FINDINGS: Data from a cohort of suspect MPX cases (identified by surveillance over the course of a 42 month period during 2009-2014) from DRC were used; real-time PCR diagnostic test results were used to establish MPX and VZV diagnoses. A total of 333 laboratory-confirmed MPX cases, 383 laboratory-confirmed VZV cases, and 36 cases that were determined to not be either MPX or VZV were included in the analyses. Significant (p<0.05) differences between laboratory-confirmed MPX and VZV cases were noted for several signs/symptoms including key rash characteristics. Both surveillance case definitions had high sensitivity and low specificities for individuals that had suspected MPX virus infections. Using 12 signs/symptoms with high sensitivity and/or specificity values, a receiver operator characteristic analysis showed that models for MPX cases that had the presence of 'fever before rash' plus at least 7 or 8 of the 12 signs/symptoms demonstrated a more balanced performance between sensitivity and specificity. CONCLUSIONS: Laboratory-confirmed MPX and VZV cases presented with many of the same signs and symptoms, and the analysis here emphasized the utility of including 12 specific signs/symptoms when investigating MPX cases. In order to document and detect endemic human MPX cases, a surveillance case definition with more specificity is needed for accurate case detection. In the absence of a more specific case definition, continued emphasis on confirmatory laboratory-based diagnostics is warranted.
Assuntos
Técnicas de Apoio para a Decisão , Monitoramento Epidemiológico , Mpox/diagnóstico , Mpox/epidemiologia , República Democrática do Congo/epidemiologia , Humanos , Mpox/patologia , Sensibilidade e EspecificidadeRESUMO
Monkeypox virus (MPXV), a zoonotic orthopoxvirus (OPX), is endemic in the Democratic Republic of Congo (DRC). Currently, diagnostic assays for human monkeypox (MPX) focus on real-time quantitative polymerase chain reaction (PCR) assays, which are typically performed in sophisticated laboratory settings. Herein, we evaluated the accuracy and utility of a multiplex MPX assay using the GeneXpert platform, a portable rapid diagnostic device that may serve as a point-of-care test to diagnose infections in endemic areas. The multiplex MPX/OPX assay includes a MPX-specific PCR test, OPX-generic PCR test, and an internal control PCR test. In total, 164 diagnostic specimens (50 crusts and 114 vesicular swabs) were collected from suspected MPX cases in Tshuapa Province, DRC, under national surveillance guidelines. The specimens were tested with the GeneXpert MPX/OPX assay and an OPX PCR assay at the Institut National de Recherche Biomedicale (INRB) in Kinshasa. Aliquots of each specimen were tested in parallel with a MPX-specific PCR assay at the Centers for Disease Control and Prevention. The results of the MPX PCR were used as the gold standard for all analyses. The GeneXpert MPX/OPX assay performed at INRB had a sensitivity of 98.8% and specificity of 100%. The GeneXpert assay performed well with both crust and vesicle samples. The GeneXpert MPX/OPX test incorporates a simple methodology that performs well in both laboratory and field conditions, suggesting its viability as a diagnostic platform that may expand and expedite current MPX detection capabilities.
Assuntos
Monkeypox virus/genética , Mpox/diagnóstico , Mpox/genética , Reação em Cadeia da Polimerase/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , República Democrática do Congo/epidemiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Mpox/epidemiologia , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e Especificidade , Adulto JovemRESUMO
Through full genome analyses of four atypical Bacillus cereus isolates, designated B. cereus biovar anthracis, we describe a distinct clade within the B. cereus group that presents with anthrax-like disease, carrying virulence plasmids similar to those of classic Bacillus anthracis. We have isolated members of this clade from different mammals (wild chimpanzees, gorillas, an elephant and goats) in West and Central Africa (Côte d'Ivoire, Cameroon, Central African Republic and Democratic Republic of Congo). The isolates shared several phenotypic features of both B. anthracis and B. cereus, but differed amongst each other in motility and their resistance or sensitivity to penicillin. They all possessed the same mutation in the regulator gene plcR, different from the one found in B. anthracis, and in addition, carry genes which enable them to produce a second capsule composed of hyaluronic acid. Our findings show the existence of a discrete clade of the B. cereus group capable of causing anthrax-like disease, found in areas of high biodiversity, which are possibly also the origin of the worldwide distributed B. anthracis. Establishing the impact of these pathogenic bacteria on threatened wildlife species will require systematic investigation. Furthermore, the consumption of wildlife found dead by the local population and presence in a domestic animal reveal potential sources of exposure to humans.
Assuntos
Antraz/veterinária , Bacillus anthracis/genética , Bacillus anthracis/patogenicidade , Bacillus cereus/genética , Bacillus cereus/patogenicidade , Proteínas de Bactérias/genética , Mamíferos/microbiologia , Transativadores/genética , África , Animais , Antraz/epidemiologia , Antraz/microbiologia , Bacillus anthracis/isolamento & purificação , Bacillus cereus/isolamento & purificação , DNA Bacteriano/sangue , Humanos , Mutação , Filogenia , Virulência/genéticaRESUMO
Hantaviruses are members of the Bunyaviridae family carried by small mammals and causing human hemorrhagic fevers worldwide. In Western Africa, where a variety of hemorrhagic fever viruses occurs, indigenous hantaviruses have been molecularly found in animal reservoirs such as rodents, shrews, and bats since 2006. To investigate the human contact to hantaviruses carried by these hosts and to assess the public health relevance of hantaviruses for humans living in the tropical rainforest regions of Western and Central Africa, we performed a cross-sectional seroprevalence study in the region of Taï National Park in Côte d'Ivoire and the Bandundu region near the Salonga National Park in the Democratic Republic (DR) of Congo. Serum samples were initially screened with enzyme-linked immunosorbent assays using nucleoproteins of several hantaviruses as diagnostic antigens. Positive results were confirmed by Western blotting and immunofluorescence testing. Seroprevalence rates of 3.9% (27/687) and 2.4% (7/295), respectively, were found in the investigated regions in Côte d'Ivoire and the DR Congo. In Côte d'Ivoire, this value was significantly higher than the seroprevalence rates previously reported from the neighboring country Guinea as well as from South Africa. Our study indicates an exposure of humans to hantaviruses in West and Central African tropical rainforest areas. In order to pinpoint the possible existence and frequency of clinical disease caused by hantaviruses in this region of the world, systematic investigations of patients with fever and renal or respiratory symptoms are required.
RESUMO
Monkeypox (MPX) is a zoonotic Orthopoxvirus infection endemic in central and western Africa. Human MPX cases occur in the central and northern regions of the Democratic Republic of the Congo (DRC), and this is the first report of confirmed MPX cases in the forested areas of North and South Kivu Provinces, with a detailed epidemiological investigation for one case. The location of each case is within areas predicted to be suitable for MPX virus transmission based on an ecological niche model. Phylogenetic analysis places these viruses in the Congo Basin clade.
Assuntos
Monkeypox virus , Mpox/epidemiologia , Adulto , Criança , República Democrática do Congo/epidemiologia , Feminino , Humanos , Lactente , Masculino , Monkeypox virus/genética , Filogenia , Guerra , Adulto JovemRESUMO
Staphylococcus schweitzeri has been recently considered to be a highly divergent Staphylococcus aureus clade and usually colonises nonhuman primates and bats in sub-Saharan Africa. Its transmissibility to humans remains unclear. We therefore investigated the transmission of S. aureus and S. schweitzeri among humans, domestic animals, and wildlife in three remote African regions. A cross-sectional study on nasal and pharyngeal colonisation in humans (n = 1288) and animals (n = 698) was performed in Côte d'Ivoire, Gabon, and Democratic Republic of Congo (DR Congo). Isolates were subjected to spa typing and multilocus sequence typing. Antimicrobial susceptibility and selected virulence factors were tested. S. schweitzeri was found in monkeys from all study sites but no transmission to humans was evident, despite frequent contact of humans with wildlife. In contrast, human-associated S. aureus sequence types (ST1, ST6, ST15) were detected in domestic animals and nonhuman primates, pointing toward a human-to-monkey transmission in the wild. The proportion of methicillin-resistant S. aureus (MRSA) among all S. aureus was 0% (Gabon), 1.7% (DR Congo), and 5.3% (Côte d'Ivoire). The majority of MRSA isolates belonged to the African clone ST88. In conclusion, we did not find any evidence for a transmission of S. schweitzeri from animals to humans. However, such a transmission might remain possible due to the close phylogenetic relation of humans and nonhuman primates. The ST88-MRSA clone was widespread in Côte d'Ivoire but not in Gabon and DR Congo.