Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Neurosci ; 42(20): 4116-4130, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35410881

RESUMO

Neurons in posterior parietal cortex (PPC) encode many aspects of the sensory world (e.g., scene structure), the posture of the body, and plans for action. For a downstream computation, however, only some of these dimensions are relevant; the rest are "nuisance variables" because their influence on neural activity changes with sensory and behavioral context, potentially corrupting the read-out of relevant information. Here we show that a key postural variable for vision (eye position) is represented robustly in male macaque PPC across a range of contexts, although the tuning of single neurons depended strongly on context. Contexts were defined by different stages of a visually guided reaching task, including (1) a visually sparse epoch, (2) a visually rich epoch, (3) a "go" epoch in which the reach was cued, and (4) during the reach itself. Eye position was constant within trials but varied across trials in a 3 × 3 grid spanning 24° × 24°. Using demixed principal component analysis of neural spike-counts, we found that the subspace of the population response encoding eye position is orthogonal to that encoding task context. Accordingly, a context-naive (fixed-parameter) decoder was nevertheless able to estimate eye position reliably across contexts. Errors were small given the sample size (∼1.78°) and would likely be even smaller with larger populations. Moreover, they were comparable to that of decoders that were optimized for each context. Our results suggest that population codes in PPC shield encoded signals from crosstalk to support robust sensorimotor transformations across contexts.SIGNIFICANCE STATEMENT Neurons in posterior parietal cortex (PPC) which are sensitive to gaze direction are thought to play a key role in spatial perception and behavior (e.g., reaching, navigation), and provide a potential substrate for brain-controlled prosthetics. Many, however, change their tuning under different sensory and behavioral contexts, raising the prospect that they provide unreliable representations of egocentric space. Here, we analyze the structure of encoding dimensions for gaze direction and context in PPC during different stages of a visually guided reaching task. We use demixed dimensionality reduction and decoding techniques to show that the coding of gaze direction in PPC is mostly invariant to context. This suggests that PPC can provide reliable spatial information across sensory and behavioral contexts.


Assuntos
Lobo Parietal , Desempenho Psicomotor , Animais , Macaca , Masculino , Neurônios/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia
2.
Alcohol Clin Exp Res ; 46(7): 1282-1293, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35491472

RESUMO

BACKGROUND: While men in the United States consume more alcohol than women, rates of drinking are converging. Nevertheless, females remain underrepresented in preclinical alcohol research. Here, we examined rats' sex-related differences in patterns of ethanol (EtOH) drinking and the effects of this drinking on exploratory and anxiety-like behavior. METHODS: Adult male and female Long-Evans rats were given 20% ethanol under the intermittent-access two-bottle-choice paradigm. Their intake was measured daily for the first 7 weeks. During the eighth week, intake was measured over the 24 h of daily access. During the ninth week, they, along with EtOH-naive controls, were tested prior to daily access in a novel chamber, light-dark box, and hole board apparatus. During the tenth week, blood ethanol concentration (BEC) was assessed after 30 to 40 min of access. RESULTS: Females overall demonstrated higher ethanol intake and preference across all access weeks than males, although only half of females drank significantly more than males. Across 24 h of daily access, both sexes had their highest intake in the first 30 min and their lowest in the middle of the light phase of the light/dark cycle. Despite their greater ethanol intake, females did not show significantly different BECs than males. In behavioral tests, females showed less vertical time in a novel activity chamber, more movement between chambers in a light-dark box, and more nose pokes in a hole-board apparatus than males. While a history of ethanol drinking led to a trend for lower vertical time in the activity chamber and greater chamber entries in the light-dark box, the effects were not sex-dependent. CONCLUSIONS: These results suggest that female and male rats could both be tested for acute effects of ethanol after 30 min of daily access, but that nuanced considerations are needed in the design of these experiments and the interpretation of their findings.


Assuntos
Consumo de Bebidas Alcoólicas , Caracteres Sexuais , Animais , Ansiedade , Etanol/farmacologia , Feminino , Humanos , Masculino , Ratos , Ratos Long-Evans
3.
Handb Exp Pharmacol ; 271: 351-377, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33301050

RESUMO

Drug addiction is a complex, persistent, and chronically relapsing neurological disorder exacerbated by acute and chronic stress. It is well known that the dynorphin/kappa opioid receptor (KOR) system regulates stress perception and responsivity, while the mesolimbic dopamine system plays a role in reward and reinforcement associated with alcohol and substance use disorders. Interestingly, the dopamine and dynorphin/KOR systems are highly integrated in mesolimbic areas, with KOR activation leading to inhibition of dopamine release, further altering the perception of reinforcing and aversive stimuli. Chronic or repeated exposure to stress or drugs potentiates KOR function ultimately contributing to a hypodopaminergic state. This hypodopaminergic state is one of the hallmarks of hyperkatifeia, defined as the hypersensitivity to emotional distress that is exacerbated during drug withdrawal and abstinence. The relationship between stress and drug addiction is bidirectional; repeated/chronic stress promotes pro-addictive behaviors, and repeated cycles of drug exposure and withdrawal, across various drug classes, produces stress. Neuroadaptations driven by this bidirectional relationship ultimately influence the perception of the reinforcing value of rewarding stimuli. In this chapter, we address the involvement of the dopamine and dynorphin/KOR systems and their interactions in shaping reinforcement value processing after drug and stress exposure, as well as a combinatorial impact of both drugs and stress.


Assuntos
Comportamento Aditivo , Receptores Opioides kappa , Dopamina , Dinorfinas , Humanos , Recompensa
4.
Handb Exp Pharmacol ; 248: 213-238, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29675581

RESUMO

Alcohol use disorders are a leading public health concern, engendering enormous costs in terms of both economic loss and human suffering. These disorders are characterized by compulsive and excessive alcohol use, as well as negative affect and alcohol craving during abstinence. Extensive research has implicated the dopamine system in both the acute pharmacological effects of alcohol and the symptomology of alcohol use disorders that develop after extended alcohol use. Preclinical research has shed light on many mechanisms by which chronic alcohol exposure dysregulates the dopamine system. However, many of the findings are inconsistent across experimental parameters such as alcohol exposure length, route of administration, and model organism. We propose that the dopaminergic alterations driving the core symptomology of alcohol use disorders are likely to be relatively stable across experimental settings. Recent work has been aimed at using multiple model organisms (mouse, rat, monkey) across various alcohol exposure procedures to search for commonalities. Here, we review recent advances in our understanding of the effects of chronic alcohol use on the dopamine system by highlighting findings that are consistent across experimental setting and species.


Assuntos
Alcoolismo/fisiopatologia , Dopamina , Etanol/farmacologia , Consumo de Bebidas Alcoólicas , Animais , Humanos , Camundongos , Ratos
5.
Artigo em Inglês | MEDLINE | ID: mdl-26625893

RESUMO

BACKGROUND: Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. METHODS: Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. RESULTS: Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. CONCLUSIONS: These data suggest that the chronic intermittent ethanol-induced increase in ethanol intake and anxiety/compulsive-like behaviors may be driven by greater kappa opioid receptor sensitivity and a hypodopaminergic state of the nucleus accumbens.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Transtornos do Sistema Nervoso Induzidos por Álcool/metabolismo , Comportamento Animal , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Etanol , Núcleo Accumbens/metabolismo , Receptores Opioides kappa/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Transmissão Sináptica , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/fisiopatologia , Consumo de Bebidas Alcoólicas/psicologia , Transtornos do Sistema Nervoso Induzidos por Álcool/fisiopatologia , Transtornos do Sistema Nervoso Induzidos por Álcool/psicologia , Analgésicos Opioides/farmacologia , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Comportamento Compulsivo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Técnicas In Vitro , Masculino , Camundongos Endogâmicos C57BL , Antagonistas de Entorpecentes/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiopatologia , Receptores Opioides kappa/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/fisiopatologia , Síndrome de Abstinência a Substâncias/psicologia , Transmissão Sináptica/efeitos dos fármacos
6.
Alcohol Clin Exp Res ; 40(6): 1202-14, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27154240

RESUMO

Individuals diagnosed with anxiety-related illnesses are at increased risk of developing alcoholism, exhibit a telescoped progression of this disease and fare worse in recovery, relative to alcoholics that do not suffer from a comorbid anxiety disorder. Similarly, preclinical evidence supports the notion that stress and anxiety represent major risk factors for the development of alcohol use disorder (AUD). Despite the importance of understanding the link between anxiety and alcoholism, much remains unknown about the neurobiological substrates underlying this relationship. One stumbling block has been the lack of animal models that reliably reproduce the spectrum of behaviors associated with increased vulnerability to these diseases. Here, we review the literature that has examined the behavioral and neurobiological outcomes of a simple rodent adolescent social isolation procedure and discuss its validity as a model of vulnerability to comorbid anxiety disorders and alcoholism. Recent studies have provided strong evidence that adolescent social isolation of male rats leads to the expression of a variety of behaviors linked with increased vulnerability to anxiety and/or AUD, including deficits in sensory gating and fear extinction, and increases in anxiety measures and ethanol drinking. Neurobiological studies are beginning to identify mesolimbic adaptations that may contribute to the behavioral phenotype engendered by this model. Some of these changes include increased excitability of ventral tegmental area dopamine neurons and pyramidal cells in the basolateral amygdala and significant alterations in baseline and stimulated catecholamine signaling. A growing body of evidence suggests that adolescent social isolation may represent a reliable rodent model of heightened vulnerability to anxiety disorders and alcoholism in male rats. These studies provide initial support for the face, construct, and predictive validity of this model and highlight its utility in identifying neurobiological adaptations associated with increased risk of developing these disorders.


Assuntos
Alcoolismo/epidemiologia , Alcoolismo/fisiopatologia , Transtornos de Ansiedade/epidemiologia , Encéfalo/fisiologia , Isolamento Social/psicologia , Alcoolismo/psicologia , Animais , Transtornos de Ansiedade/psicologia , Comorbidade , Modelos Animais de Doenças , Humanos
7.
Int J Mol Sci ; 17(8)2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27472317

RESUMO

The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc) κ opioid receptors (KOR) in chronic intermittent ethanol (CIE) exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs.


Assuntos
Dopamina/metabolismo , Etanol/administração & dosagem , Naltrexona/análogos & derivados , Antagonistas de Entorpecentes/farmacologia , Núcleo Accumbens/metabolismo , Receptores Opioides kappa/metabolismo , Animais , Depressores do Sistema Nervoso Central/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naltrexona/farmacologia , Núcleo Accumbens/efeitos dos fármacos
8.
Synapse ; 69(8): 385-95, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25963724

RESUMO

Adolescent social isolation (SI) results in numerous behavioral alterations associated with increased risk of alcoholism. Notably, many of these changes involve the basolateral amygdala (BLA), including increased alcohol seeking. The BLA sends a strong glutamatergic projection to the nucleus accumbens and activation of this pathway potentiates reward-seeking behavior. Dopamine (DA) and norepinephrine (NE) exert powerful excitatory and inhibitory effects on BLA activity and chronic stress can disrupt the excitation-inhibition balance maintained by these catecholamines. Notably, the impact of SI on BLA DA and NE neurotransmission is unknown. Thus the aim of this study was to characterize SI-mediated catecholamine alterations in the BLA. Male Long Evans rats were housed in groups of four (GH) or in SI for 6 weeks during adolescence. DA and NE transporter levels were then measured using Western blot hybridization and baseline and ethanol-stimulated DA and NE levels were quantified using microdialysis. DA transporter levels were increased and baseline DA levels were decreased in SI compared to GH rats. SI also increased DA responses to an acute ethanol (2 g kg(-1)) challenge. While no group differences were noted in NE transporter or baseline NE levels, acute ethanol (2 g kg(-1)) only significantly increased NE levels in SI animals. Collectively, these SI-dependent changes in BLA catecholamine signaling may lead to an increase in BLA excitability and a strengthening of the glutamatergic projection between the BLA and NAc. Such changes may promote the elevated ethanol drinking behavior observed in rats subjected to chronic adolescent stress.


Assuntos
Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Dopamina/metabolismo , Etanol/farmacologia , Norepinefrina/metabolismo , Isolamento Social , Animais , Complexo Nuclear Basolateral da Amígdala/crescimento & desenvolvimento , Complexo Nuclear Basolateral da Amígdala/metabolismo , Western Blotting , Cromatografia Líquida de Alta Pressão , Doença Crônica , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Masculino , Microdiálise , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Distribuição Aleatória , Ratos Long-Evans
9.
J Physiol ; 592(16): 3625-46, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24928956

RESUMO

The posterior parietal cortex contains neurons that respond to visual stimulation and motor behaviour. The objective of the current study was to test short-term adaptation in neurons in macaque area 7a and the dorsal prelunate during visually guided reaching using Fresnel prisms that displaced the visual field. The visual perturbation shifted the eye position and created a mismatch between perceived and actual reach location. Two non-human primates were trained to reach to visual targets before, during and after prism exposure while fixating the reach target in different locations. They were required to reach to the physical location of the reach target and not the perceived, displaced location. While behavioural adaptation to the prisms occurred within a few trials, the majority of neurons responded to the distortion either with substantial changes in spatial eye position tuning or changes in overall firing rate. These changes persisted even after prism removal. The spatial changes were not correlated with the direction of induced prism shift. The transformation of gain fields between conditions was estimated by calculating the translation and rotation in Euler angles. Rotations and translations of the horizontal and vertical spatial components occurred in a systematic manner for the population of neurons suggesting that the posterior parietal cortex retains a constant representation of the visual field remapping between experimental conditions.


Assuntos
Neurônios/fisiologia , Lobo Parietal/fisiologia , Percepção Espacial , Adaptação Fisiológica , Animais , Potenciais Evocados Visuais , Movimentos Oculares , Macaca mulatta , Masculino , Destreza Motora , Lobo Parietal/citologia
10.
Alcohol Clin Exp Res ; 38(11): 2770-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25421514

RESUMO

BACKGROUND: Early-life stress is associated with increased vulnerability to alcohol addiction. However, the neural substrates linking chronic childhood/adolescent stress and increased risk of alcohol addiction are not well understood. In the nucleus accumbens (NAc), dopamine (DA) and norepinephrine (NE) signaling can be profoundly influenced by stress, anxiety, and drugs of abuse, including ethanol (EtOH). Here, we employed a rodent model of early-life stress that results in enduring increases in behavioral risk factors of alcoholism to gain a better understanding of how chronic adolescent stress may impact the EtOH sensitivity of DA and NE release in the NAc. METHODS: Male Long-Evans rats were either group housed (GH; 4 rats/cage) or socially isolated (SI; 1 rat/cage) for 6 weeks beginning on postnatal day 28. SI and GH rats were tested in adulthood for anxiety-like behaviors (elevated plus maze), and the effects of EtOH (1 and 2 g/kg; intraperitoneally.) on NAc DA and NE were assessed by microdialysis. RESULTS: SI animals showed increased anxiety-like behavior compared to GH animals. Although SI had no effect on baseline levels of DA or NE, baseline DA levels were positively correlated with anxiety measures. In addition, while no significant differences were observed with 1 g/kg EtOH, the 2 g/kg dose induced significantly greater DA release in SI animals. Moreover, EtOH (2 g/kg) only elevated NAc NE levels in SI rats. CONCLUSIONS: These results suggest that chronic early-life stress sensitizes accumbal DA and NE release in response to an acute EtOH challenge. A greater EtOH sensitivity of DA and NE release dynamics in the NAc may contribute to increases in behavioral risk factors of alcoholism, like greater EtOH self-administration, that are observed in SI rats.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Dopamina/metabolismo , Etanol/administração & dosagem , Norepinefrina/metabolismo , Núcleo Accumbens/metabolismo , Isolamento Social , Consumo de Bebidas Alcoólicas/psicologia , Animais , Masculino , Núcleo Accumbens/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Long-Evans , Autoadministração , Isolamento Social/psicologia
11.
Sci Rep ; 14(1): 6509, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499566

RESUMO

Cocaine disrupts dopamine (DA) and kappa opioid receptor (KOR) system activity, with long-term exposure reducing inhibiton of DA uptake by cocaine and increasing KOR system function. Single treatment therapies have not been successful for cocaine use disorder; therefore, this study focuses on a combination therapy targeting the dopamine transporter (DAT) and KOR. Sprague Dawley rats self-administered 5 days of cocaine (1.5 mg/kg/inf, max 40 inf/day, FR1), followed by 14 days on a progressive ratio (PR) schedule (0.19 mg/kg/infusion). Behavioral effects of individual and combined administration of phenmetrazine and nBNI were then examined using PR. Additionally, ex vivo fast scan cyclic voltammetry was then used to assess alterations in DA and KOR system activity in the nucleus accumbens before and after treatments. Chronic administration of phenmetrazine as well as the combination of phenmetrazine and nBNI-but not nBNI alone-significantly reduced PR breakpoints. In addition, the combination of phenmetrazine and nBNI partially reversed cocaine-induced neurodysregulations of the KOR and DA systems, indicating therapeutic benefits of targeting the DA and KOR systems in tandem. These data highlight the potential benefits of the DAT and KOR as dual-cellular targets to reduce motivation to administer cocaine and reverse cocaine-induced alterations of the DA system.


Assuntos
Cocaína , Receptores Opioides kappa , Ratos , Animais , Receptores Opioides kappa/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina , Motivação , Dopamina/farmacologia , Ratos Sprague-Dawley , Fenmetrazina/farmacologia , Cocaína/farmacologia , Núcleo Accumbens/metabolismo , Autoadministração
12.
Artigo em Inglês | MEDLINE | ID: mdl-38528134

RESUMO

Although the kappa-opioid receptor (KOR) and its endogenous ligand, dynorphin, are believed to be involved in ethanol drinking, evidence on the direction of their effects has been mixed. The nucleus accumbens (NAc) shell densely expresses KORs, but previous studies have not found KOR activation to influence ethanol drinking. Using microinjections into the NAc shell of male and female Long-Evans rats that drank under the intermittent-access procedure, we found that the KOR agonist, U50,488, had no effect on ethanol drinking when injected into the middle NAc shell, but that it promoted intake in males and high-drinking females in the caudal NAc shell and high-drinking females in the rostral shell, and decreased intake in males and low-drinking females in the rostral shell. Conversely, injection of the KOR antagonist, nor-binaltorphimine, stimulated ethanol drinking in low-drinking females when injected into the rostral NAc shell and decreased drinking in high-drinking females when injected into the caudal NAc shell. These effects of KOR activity were substance-specific, as U50,488 did not affect sucrose intake. Using quantitative real-time PCR, we found that baseline gene expression of the KOR was higher in the rostral compared to caudal NAc shell, but that this was upregulated in the rostral shell with a history of ethanol drinking. Our findings have important clinical implications, demonstrating that KOR stimulation in the NAc shell can affect ethanol drinking, but that this depends on NAc subregion, subject sex, and ethanol intake level, and suggesting that this may be due to differences in KOR expression.

13.
Pain ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38985454

RESUMO

ABSTRACT: Preclinical and clinical work has demonstrated altered plasticity and activity in the nucleus accumbens (NAc) under chronic pain states, highlighting critical therapeutic avenues for the management of chronic pain conditions. In this study, we demonstrate that myocyte enhancer factor 2C (MEF2C), a master regulator of neuronal activity and plasticity, is repressed in NAc neurons after prolonged spared nerve injury (SNI). Viral-mediated overexpression of Mef2c in NAc neurons partially ameliorated sensory hypersensitivity and emotional behaviors in mice with SNI, while also altering transcriptional pathways associated with synaptic signaling. Mef2c overexpression also reversed SNI-induced potentiation of phasic dopamine release and neuronal hyperexcitability in the NAc. Transcriptional changes induced by Mef2c overexpression were different than those observed after desipramine treatment, suggesting a mechanism of action different from antidepressants. Overall, we show that interventions in MEF2C-regulated mechanisms in the NAc are sufficient to disrupt the maintenance of chronic pain states, providing potential new treatment avenues for neuropathic pain.

14.
Basic Clin Pharmacol Toxicol ; 133(5): 526-534, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37539456

RESUMO

The nucleus accumbens (NAc) core is involved in regulating stress and shaping reward seeking behaviours. Multiple neuromodulators, including dynorphin/kappa opioid receptor (KOR) and dopamine systems, converge in this area to influence behavioural outcomes. KOR activation acutely inhibits dopamine release and chronically depresses overall dopamine transmission. Recently, studies in the NAc shell have revealed that the impact of KOR activation on behaviour is regionally specific, and these rostro-caudal differences are likely driven by greater control of KORs over dopamine inhibition in the caudal compared with rostral subregion. Given the importance of NAc core, particularly the interaction between KORs and dopamine in regulating reward seeking behaviours, we examined the impact of KOR activation on dopamine release and uptake along the rostro-caudal axis in the NAc core of male and female mice. Using ex vivo fast scan cyclic voltammetry, we observed that KOR mediated inhibition of dopamine release was significantly greater in caudal compared with rostral NAc core with no significant sex differences observed. These data suggest that KORs regulate dopamine release differentially along the rostro-caudal axis, providing a new axis on which to examine the process by which the KOR/dopamine system controls reward encoding.


Assuntos
Núcleo Accumbens , Receptores Opioides kappa , Camundongos , Feminino , Masculino , Animais , Dopamina
15.
Alcohol Clin Exp Res (Hoboken) ; 47(6): 1027-1038, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37042026

RESUMO

The dynorphin (DYN)/kappa opioid receptor (KOR) system has increasingly been investigated as a possible pharmacotherapeutic target for alcohol use disorder, but findings on the direction of its effects have been mixed. Activation of KORs by DYN has been shown to elicit dysphoric effects, and the DYN/KOR system has canonically been considered particularly important in driving alcohol intake through negative reinforcement in dependent states. However, this review also highlights its activity in opposing the positive reinforcement that drives alcohol intake at earlier stages. Both DYN and KORs are concentrated in the extended amygdala, a set of interconnected regions that includes the bed nucleus of the stria terminalis, central nucleus of the amygdala, and nucleus accumbens shell. This review focuses on the role of the DYN/KOR system in the extended amygdala in ethanol use. It begins by examining the effects of ethanol on the expression of DYN/KOR in the extended amygdala, expression of DYN/KOR in alcohol-preferring and alcohol-avoiding animals, and the effects of knocking out DYN/KOR genes on ethanol intake. Then, it examines the effects on ethanol use in both dependent and nondependent states from systemic pharmacological manipulations of DYN/KOR and from specific manipulation of this system in regions of the extended amygdala. We propose that greater expression and binding of DYN/KOR, by reducing the positive reinforcement that drives early stages of intake, initially acts to prevent the escalation of ethanol drinking. However, prolonged, binge-like, or intermittent ethanol intake enhances levels of DYN/KOR in the extended amygdala such that the system ultimately facilitates the negative reinforcement that drives later stages of ethanol drinking. This review highlights the potential of the DYN/KOR system as a target that can affect different outcomes across different stages of ethanol drinking and the development of alcohol use disorder.

16.
Pain ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962155

RESUMO

ABSTRACT: Excessive alcohol consumption in adolescence can disrupt neural development and may augment pain perception. Recent studies have shown that the nucleus accumbens (NAc) shell is involved in mediating pain sensitivity after peripheral inflammation in rodent models of chronic pain and alcohol use disorder. Interestingly, there have been very few studies examining the impact of chronic ethanol exposure during adolescence on pain sensitivity in adulthood. Therefore, in this project, we investigated the impact of adolescent chronic intermittent ethanol (aCIE) exposure on mechanical allodynia. Furthermore, given the involvement of the NAc shell in pain processing and chronic ethanol-mediated changes, we measured changes in accumbal dopamine kinetics during protracted withdrawal. We found that both male and female aCIE rats show mechanical allodynia during withdrawal. Furthermore, male and female aCIE rats show greater evoked tonic dopamine release, maximal rate of dopamine reuptake, and dopamine affinity to the dopamine transporter in the NAc shell compared with controls. With phasic stimulation, aCIE rats also showed greater dopamine release compared with AIR-exposed rats. Inhibition of dopamine transmission targeted in the NAc shell reversed the aCIE-associated facilitation of mechanical allodynia in both sexes. These data suggest that aCIE exposure exacerbates pain sensitivity during withdrawal in an accumbal dopamine-dependent manner.

17.
Front Behav Neurosci ; 15: 725856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744651

RESUMO

While a bidirectional positive link between palatable food intake and alcohol drinking has been suggested, several rodents studies report reduced alcohol drinking following palatable diets exposure. These studies utilized purified rodents' diets high in sugar/fat; however, the effects of hyper-palatable food (HPF) rich in fat and sugar on alcohol drinking remain unclear. Furthermore, neural substrates involved in HPF-mediated changes in alcohol consumption are poorly understood. Therefore, the present study evaluated the effects of patterned feeding of a hyper-palatable food (Oreo cookies) on alcohol drinking as well as dopamine (DA) and serotonin (5-HT) content in rat's mesocorticolimbic (medial-prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens) circuitry. Male Long Evans rats received 8-weeks of intermittent (Mon, Tue, Wed) Oreo cookies access, which induced a patterned feeding, in which rats in the Oreo group overconsumed calories on HPF days whereas underconsumption was observed on chow only (Thu, Fri) days. Following HPF exposure, alcohol consumption was evaluated while patterned feeding continued. Alcohol intake in the Oreo group was significantly lower as compared to the chow controls. However, alcohol intake in the Oreo group increased to the levels seen in the group receiving chow following the suspension of patterned HPF feeding. Finally, DA levels in the nucleus accumbens were significantly greater, whereas its metabolite (DOPAC) levels were lower in the Oreo group compared to the chow controls. Surprisingly, 5-HT levels remained unaltered in all tested brain areas. Together, these data suggest that HPF-associated increased DA availability and reduced DA turnover within mesocorticolimbic circuitry may regulate alcohol drinking following patterned HPF feeding.

18.
Brain Res ; 1735: 146742, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32114059

RESUMO

The dynorphin / kappa opioid receptor (KOR) system has been implicated in many aspects that influence neuropsychiatric disorders. Namely, this system modulates neural circuits that primarily regulate reward seeking, motivation processing, stress responsivity, and pain sensitivity, thus affecting the development of substance and alcohol use disorder (AUD). The effects of this system are often bidirectional and depend on projection targets. To date, a majority of the studies focusing on this system have examined the KOR function using agonists and antagonists. Indeed, there are studies that have examined prodynorphin and dynorphin levels by measuring mRNA and tissue content levels; however, static levels of the neuropeptide and its precursor do not explain complete and online function of the peptide as would be explained by measuring dynorphin transmission in real time. New and exciting methods using optogenetics, chemogenetics, genetic sensors, fast scan cyclic voltammetry are now being developed to detect various neuropeptides with a focus on opioid peptides, including dynorphin. In this review we discuss studies that examine dynorphin projections in areas involved in AUD, its functional involvement in AUD and vulnerability to develop AUD at various ages. Moreover, we discuss dynorphin's role in promoting AUD by dysregulation motivation circuits and how advancements in opioid peptide detection will further our understanding.


Assuntos
Alcoolismo/tratamento farmacológico , Dinorfinas/farmacologia , Dinorfinas/uso terapêutico , Alcoolismo/metabolismo , Animais , Dinorfinas/metabolismo , Humanos , Motivação/efeitos dos fármacos , Neuropeptídeos/análise , Neuropeptídeos/química , Receptores Opioides kappa/efeitos dos fármacos , Receptores Opioides kappa/fisiologia , Recompensa
19.
Neuropharmacology ; 181: 108341, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33011200

RESUMO

Neural circuit engagement within the nucleus accumbens (NAc) shell is implicated in the regulation of both negative and positive affect. Classically, the dynorphin/kappa opioid receptor (KOR) system in the NAc was believed to promote aversion, while dopamine was viewed as interacting with reward behavior, and KOR activation was known to inhibit dopamine release. Recently, however, both the KOR and dopamine systems have, separately, been shown to have differential effects across the rostro-caudal axis of the NAc shell on hedonic responses. Whether or not this is due to interactions between KORs and dopamine, and if it extends to anxiety-like or approach-avoidance behaviors, remains to be determined. In this study, we examined in rats the relationship between the KOR and dopamine systems in both the rostral and caudal NAc shell using ex vivo fast scan cyclic voltammetry and the impact of KOR activation on affective behavior using exploration-based tasks. We report here that activation of KORs in the caudal NAc shell significantly inhibits dopamine release, stimulates rearing behavior in a novel environment, increases anxiety-like or avoidance behavior, and reduces locomotor activity. In contrast, activation of KORs in the rostral NAc shell inhibits dopamine release to a lesser extent and instead reduces anxiety-like behavior or increases approach behavior. Taken together, these results indicate that there is heterogeneity across the rostro-caudal axis of the NAc shell in the effects of KOR stimulation on affective behaviors, and they suggest that this might be due to differences in KOR control over dopamine release.


Assuntos
Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Receptores Opioides kappa/efeitos dos fármacos , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Afeto , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Encéfalo/patologia , Dinorfinas/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Long-Evans , Recompensa
20.
Brain Sci ; 10(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717830

RESUMO

Underage alcohol drinking increases the risk of developing alcohol use disorder (AUD). In rodents, adolescent ethanol exposure augments ethanol consumption and anxiety-like behavior while reducing social interaction. However, the underlying mechanisms driving these adaptations are unclear. The dopamine and kappa opioid receptor (KOR) systems in the nucleus accumbens (NAc) are implicated in affective disorders, including AUD, with studies showing augmented KOR function and reduced dopamine transmission in ethanol-dependent adult animals. Thus, here we examine the impact of adolescent intermittent ethanol (AIE) exposure on dopamine transmission and KOR function in the NAc. Rats were exposed to water or ethanol (4 g/kg, intragastrically) every other day during early (postnatal day (PD) 25-45) or late (PD 45-65) adolescence. While AIE exposure during early adolescence (early-AIE) did not alter dopamine release in male and female rats, AIE exposure during late adolescence (late-AIE) resulted in greater dopamine release in males and lower dopamine release in females. To determine the impact of AIE on KOR function, we measured the effect of KOR activation using U50,488 (0.01-1.00 µM) on dopamine release. Early-AIE exposure potentiated KOR-mediated inhibition of dopamine release in females, while late-AIE exposure attenuated this effect in males. Interestingly, no differences in KOR function were observed in early-AIE exposed males and late-AIE exposed females. Together, these data suggest that AIE exposure impact on neural processes is dependent on sex and exposure timing. These differences likely arise from differential developmental timing in males and females. This is the first study to show changes in KOR function following AIE exposure.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa