Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Qual ; 47(4): 663-673, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30025032

RESUMO

Intensive tillage, low-residue crops, and a warm, humid climate have contributed to soil organic carbon (SOC) loss in the southeastern Coastal Plains region. Conservation (CnT) tillage and winter cover cropping are current management practices to rebuild SOC; however, there is sparse long-term field data showing how these management practices perform under variable climate conditions. The objectives of this study were to use CQESTR, a process-based C model, to simulate SOC in the top 15 cm of a loamy sand soil (fine-loamy, kaolinitic, thermic Typic Kandiudult) under conventional (CvT) or CnT tillage to elucidate the impact of projected climate change and crop yields on SOC relative to management and recommend the best agriculture management to increase SOC. Conservation tillage was predicted to increase SOC by 0.10 to 0.64 Mg C ha for six of eight crop rotations compared with CvT by 2033. The addition of a winter crop [rye ( L.) or winter wheat ( L.)] to a corn ( L.)-cotton ( L.) or corn-soybean [ (L.) Merr.] rotation increased SOC by 1.47 to 2.55 Mg C ha. A continued increase in crop yields following historical trends could increase SOC by 0.28 Mg C ha, whereas climate change is unlikely to have a significant impact on SOC except in the corn-cotton or corn-soybean rotations where SOC decreased up to 0.15 Mg C ha by 2033. The adoption of CnT and cover crop management with high-residue-producing corn will likely increase SOC accretion in loamy sand soils. Simulation results indicate that soil C saturation may be reached in high-residue rotations, and increasing SOC deeper in the soil profile will be required for long-term SOC accretion beyond 2030.


Assuntos
Carbono , Mudança Climática , Solo/química , Agricultura , Monitoramento Ambiental
2.
J Environ Qual ; 42(4): 1274-80, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24216379

RESUMO

Difficulties in accessing high-quality data on trace gas fluxes and performance of bioenergy/bioproduct feedstocks limit the ability of researchers and others to address environmental impacts of agriculture and the potential to produce feedstocks. To address those needs, the GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement network) and REAP (Renewable Energy Assessment Project) research programs were initiated by the USDA Agricultural Research Service (ARS). A major product of these programs is the creation of a database with greenhouse gas fluxes, soil carbon stocks, biomass yield, nutrient, and energy characteristics, and input data for modeling cropped and grazed systems. The data include site descriptors (e.g., weather, soil class, spatial attributes), experimental design (e.g., factors manipulated, measurements performed, plot layouts), management information (e.g., planting and harvesting schedules, fertilizer types and amounts, biomass harvested, grazing intensity), and measurements (e.g., soil C and N stocks, plant biomass amount and chemical composition). To promote standardization of data and ensure that experiments were fully described, sampling protocols and a spreadsheet-based data-entry template were developed. Data were first uploaded to a temporary database for checking and then were uploaded to the central database. A Web-accessible application allows for registered users to query and download data including measurement protocols. Separate portals have been provided for each project (GRACEnet and REAP) at nrrc.ars.usda.gov/slgracenet/#/Home and nrrc.ars.usda.gov/slreap/#/Home. The database architecture and data entry template have proven flexible and robust for describing a wide range of field experiments and thus appear suitable for other natural resource research projects.


Assuntos
Efeito Estufa , Solo , Agricultura , Carbono , Produtos Agrícolas , Fertilizantes , Solo/química
3.
J Environ Qual ; 39(5): 1711-23, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21043276

RESUMO

Improved understanding of year-to-year late-spring soil nitrate test (LSNT) variability could help make it more attractive to producers. We test the ability of the Root Zone Water Quality Model (RZWQM) to simulate watershed-scale variability due to the LSNT, and we use the optimized model to simulate long-term field N dynamics under related conditions. Autoregressive techniques and the automatic parameter calibration program PEST were used to show that RZWQM simulates significantly lower nitrate concentration in discharge from LSNT treatments compared with areas receiving fall N fertilizer applications within the tile-drained Walnut Creek, Iowa, watershed (>5 mg NL(-1) difference for the third year of the treatment, 1999). This result is similar to field-measured data from a paired watershed experiment. A statistical model we developed using RZWQM simulations from 1970 to 2005 shows that early-season precipitation and early-season temperature account for 90% of the interannual variation in LSNT-based fertilizer N rates. Long-term simulations with similar average N application rates for corn (Zea mays L.) (151 kg N ha(-1)) show annual average N loss in tile flow of 20.4, 22.2, and 27.3 kg N ha(-1) for LSNT, single spring, and single fall N applications. These results suggest that (i) RZWQM is a promising tool to accurately estimate the water quality effects of LSNT; (ii) the majority of N loss difference between LSNT and fall applications is because more N remains in the root zone for crop uptake; and (iii) year-to-year LSNT-based N rate differences are mainly due to variation in early-season precipitation and temperature.


Assuntos
Guias como Assunto , Nitrogênio/análise , Solo/análise , Modelos Teóricos
4.
Sci Total Environ ; 663: 776-792, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30738259

RESUMO

Harvesting corn stover removes N from the fields, but its effect on subsurface drainage and other N losses is uncertain. We used the Root Zone Water Quality Model (RZWQM) to examine N losses with 0 (NRR) or 50% (RR) corn residue removal within a corn and soybean rotation over a 10-yr period. In general, all simulations used the same pre-plant or post-emergence N fertilizer rate (200 kg ha-1 yr-1). Simulated annual corn yields averaged 10.7 Mg ha-1 for the post emergence applications (NRRpost and RRpost), and 9.5 and 9.4 Mg ha-1 yr-1 for NRRpre and RRpre. Average total N input during corn years was 19.3 kg N ha-1 greater for NRRpre compared to RRpre due to additional N in surface residues, but drainage N loss was only 1.1 kg N ha-1 yr-1 greater for NRRpre. Post-emergence N application with no residue removal (NRRpost) reduced average drainage N loss by 16.5 kg ha-1 yr-1 compared to pre-plant N fertilization (NRRpre). The farm-gate net energy ratio was greatest for RRpost and lowest for NRRpre (14.1 and 10.4 MJ output per MJ input) while greenhouse gas intensity was lowest for RRpost and highest for NRRpre (11.7 and 17.3 g CO2-eq. MJ-1 output). Similar to published studies, the simulations showed little difference in N2O emissions between scenarios, decreased microbial immobilization for RR compared to NRR, and small soil carbon changes over the 10-yr simulation. In contrast to several previous modeling studies, the crop yield and N lost to drain flow were nearly the same between NRR and RR without supplemental N applied to replace N removed with corn stover. These results are important to optimizing the energy and nitrogen budgets associated with corn stover harvest and for developing a sustainable bioenergy industry.


Assuntos
Produção Agrícola/métodos , Fertilizantes/análise , Nitrogênio/análise , Solo/química , Zea mays/crescimento & desenvolvimento , Iowa , Modelos Teóricos , Qualidade da Água
5.
J Environ Qual ; 30(4): 1305-14, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11476509

RESUMO

The relationships between N fertilizer rate, yield, and NO3 leaching need to be quantified to develop soil and crop management practices that are economically and environmentally sustainable. From 1996 through 1999, we measured yield and NO3 loss from a subsurface drained field in central Iowa at three N fertilizer rates: a low (L) rate of 67 kg ha(-1) in 1996 and 57 kg ha(-1) in 1998, a medium (M) rate of 135 kg ha(-1) in 1996 and 114 kg ha(-1) in 1998, and a high (H) rate of 202 kg ha(-1) in 1996 and 172 kg ha(-1) in 1998. Corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] were grown in rotation with N fertilizer applied in the spring to corn only. For the L treatment, NO3 concentrations in the drainage water exceeded the 10 mg N L(-1) maximum contaminant level (MCL) established by the USEPA for drinking water only during the years that corn was grown. For the M and H treatments, NO3 concentrations exceeded the MCL in all years, regardless of crop grown. For all years, the NO3 mass loss in tile drainage water from the H treatment (48 kg N ha(-1)) was significantly greater than the mass losses from the M (35 kg N ha(-1)) and L (29 kg N ha(-1)) treatments, which were not significantly different. The economically optimum N fertilizer rate for corn was between 67 and 135 kg ha(-1) in 1996 and 114 and 172 kg ha(-1) in 1998, but the net N mass balance indicated that N was being mined from the soil at these N fertilizer levels and that the system would not be sustainable.


Assuntos
Fertilizantes , Nitratos/análise , Poluentes do Solo/análise , Poluentes da Água/análise , Agricultura , Nitratos/química , Estações do Ano , Glycine max , Movimentos da Água , Zea mays
6.
J Environ Qual ; 33(2): 669-77, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15074819

RESUMO

Excessive nitrate leaching from the U.S. Corn Belt has created serious water quality problems and contributed to the expansion of the hypoxic zone in the Gulf of Mexico. We evaluated the effect of implementing the late spring nitrate test (LSNT) for corn (Zea mays L.) grown within a 400-ha, tile-drained subbasin in central Iowa. Surface water discharge and NO3 concentrations from the treated subbasin and two adjacent subbasins receiving primarily fall-applied, anhydrous ammonia were compared. In two of four years, the LSNT method significantly reduced N fertilizer applications compared with the farmers' standard practices. Average corn yield from LSNT fields and nonlimiting N fertilizer check strips was not significantly different. Autoregressive (AR) models using weekly time series in surface water NO3 concentration differences between the LSNT and control subbasins indicated no consistent significant differences during the pre-LSNT (1992-1996) period. However, by the second year (1998) of the treatment period (1997-2000), NO3 concentrations in surface water from the treated subbasin were significantly lower than the concentrations coming from both control basins. Annual average flow-weighted NO3 concentrations for the last two years (1999-2000) were 11.3 mg N L(-1) for the LSNT and subbasin and 16.0 mg N L(-1) for the control subbasins. Based on these values and the AR models, widespread adoption of the LSNT program for managing N fertilizer where fall N application is typically practiced could result in a > or = 30% decrease for NO3 concentrations in surface water.


Assuntos
Fertilizantes , Modelos Teóricos , Nitratos/análise , Poluentes da Água/análise , Abastecimento de Água , Agricultura , Amônia/análise , Monitoramento Ambiental , Estações do Ano , Movimentos da Água , Zea mays
7.
J Nematol ; 17(1): 25-8, 1985 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19294053

RESUMO

Soil populations of plant-parasitic nematodes were monitored bimonthly for 18 months in irrigated and nonirrigated corn plantings using four production systems: conventional and minimum tillage with crop residue returned and minimum tillage with 60% or 90% of previous corn crop residue removed. Populations of Meloidogyne incognita, Scutellonema brachyurum, Pratylenchus scribneri, and Paratrichodorus christiei varied among the tillage, nematicide, and irrigation treatments. Meloidogyne incognita and P. christiei populations were not significantly affected by tillage method, but S. brachyurum populations were highest during April 1981 and 1982 in minimum tillage treatments where crop debris was not removed. In contrast, S. brachyurum populations were lowest during the same period in minimum tillage plots where 90% of previous crop debris had been removed or where residues were incorporated with conventional tillage. Populations of P. scribneri were lowest in minimum tillage during August 1981 and April 1982. Regardless of tillage system, corn yields in all nonirrigated plots were increased during 1982 by application of carbofuran (2.24 kg a.i./ha). No yield increases were observed following nematicide application in 1981.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa