Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Circ Res ; 106(3): 573-82, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20019332

RESUMO

RATIONALE: Mutations in the LMNA gene, which encodes the nuclear lamina proteins lamin A and lamin C, are the most common cause of familial dilated cardiomyopathy (DCM). Mechanical stress-induced apoptosis has been proposed as the mechanism underpinning DCM in lamin A/C-deficient hearts, but supporting in vivo evidence has been lacking. OBJECTIVE: Our aim was to study interventions to modify mechanical stress in heterozygous Lmna knockout (Lmna(+/-)) mice. METHODS AND RESULTS: Cardiac structure and function were evaluated before and after exercise training, thoracic aortic constriction, and carvedilol treatment. Lmna(+/-) mice develop adult-onset DCM with relatively more severe disease in males. Lmna(+/-) cardiomyocytes show altered nuclear morphology and perinuclear desmin organization, with enhanced responses to hypo-osmotic stress indicative of cytoskeletal instability. Despite these structural defects that provide a template for mechanical stress-induced damage, young Lmna(+/-) mice subjected to 6 weeks of moderate or strenuous exercise training did not show induction of apoptosis or accelerated DCM. In contrast, regular moderate exercise attenuated DCM development in male Lmna(+/-) mice. Sustained pressure overload generated by thoracic aortic constriction depressed ventricular contraction in young wild-type and Lmna(+/-) mice with no sex or genotype differences in the time-course or severity of response. Treatment of male Lmna(+/-) mice from 12 to 40 weeks with the beta-blocker, carvedilol, prevented the dilatation and contractile dysfunction that was observed in placebo-treated mice. CONCLUSIONS: These data suggest that factors other than mechanical stress-induced apoptosis contribute to DCM and provide the first demonstration that regular moderate exercise and carvedilol can modify disease progression in lamin A/C-deficient hearts.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Carbazóis/uso terapêutico , Cardiomiopatia Dilatada/genética , Coração/fisiopatologia , Lamina Tipo A/deficiência , Miocárdio/patologia , Propanolaminas/uso terapêutico , Estresse Mecânico , Animais , Aorta Torácica , Apoptose , Cardiomiopatia Dilatada/tratamento farmacológico , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Carvedilol , Constrição , Desmina/análise , Feminino , Genótipo , Lamina Tipo A/genética , Masculino , Camundongos , Camundongos Knockout , Pressão Osmótica , Condicionamento Físico Animal , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
2.
J Am Coll Cardiol ; 59(11): 1017-25, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22402074

RESUMO

OBJECTIVES: The aim of this study was to evaluate the role of cardiac K(+) channel gene variants in families with atrial fibrillation (AF). BACKGROUND: The K(+) channels play a major role in atrial repolarization but single mutations in cardiac K(+) channel genes are infrequently present in AF families. The collective effect of background K(+) channel variants of varying prevalence and effect size on the atrial substrate for AF is largely unexplored. METHODS: Genes encoding the major cardiac K(+) channels were resequenced in 80 AF probands. Nonsynonymous coding sequence variants identified in AF probands were evaluated in 240 control subjects. Novel variants were characterized using patch-clamp techniques and in silico modeling was performed using the Courtemanche atrial cell model. RESULTS: Nineteen nonsynonymous variants in 9 genes were found, including 11 rare variants. Rare variants were more frequent in AF probands (18.8% vs. 4.2%, p < 0.001), and the mean number of variants was greater (0.21 vs. 0.04, p < 0.001). The majority of K(+) channel variants individually had modest functional effects. Modeling simulations to evaluate combinations of K(+) channel variants of varying population frequency indicated that simultaneous small perturbations of multiple current densities had nonlinear interactions and could result in substantial (>30 ms) shortening or lengthening of action potential duration as well as increased dispersion of repolarization. CONCLUSIONS: Families with AF show an excess of rare functional K(+) channel gene variants of varying phenotypic effect size that may contribute to an atrial arrhythmogenic substrate. Atrial cell modeling is a useful tool to assess epistatic interactions between multiple variants.


Assuntos
Fibrilação Atrial/genética , Epistasia Genética , Canais de Potássio/genética , Potenciais de Ação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Variação Genética , Sistema de Condução Cardíaco/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Patch-Clamp , Análise de Sequência de DNA , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa