RESUMO
Kaposi's sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS), a hyperplasia consisting of enlarged malformed vasculature and spindle-shaped cells, the main proliferative component of KS. While spindle cells express markers of lymphatic and blood endothelium, the origin of spindle cells is unknown. Endothelial precursor cells have been proposed as the source of spindle cells. We previously identified two types of circulating endothelial colony forming cells (ECFCs), ones that expressed markers of blood endothelium and ones that expressed markers of lymphatic endothelium. Here we examined both blood and lymphatic ECFCs infected with KSHV. Lymphatic ECFCs are significantly more susceptible to KSHV infection than the blood ECFCs and maintain the viral episomes during passage in culture while the blood ECFCs lose the viral episome. Only the KSHV-infected lymphatic ECFCs (K-ECFCLY) grew to small multicellular colonies in soft agar whereas the infected blood ECFCs and all uninfected ECFCs failed to proliferate. The K-ECFCLYs express high levels of SOX18, which supported the maintenance of high copy number of KSHV genomes. When implanted subcutaneously into NSG mice, the K-ECFCLYs persisted in vivo and recapitulated the phenotype of KS tumor cells with high number of viral genome copies and spindling morphology. These spindle cell hallmarks were significantly reduced when mice were treated with SOX18 inhibitor, SM4. These data suggest that KSHV-infected lymphatic ECFCs can be utilized as a KSHV infection model for in vivo translational studies to test novel inhibitors representing potential treatment modalities for KS.
Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Animais , Camundongos , Herpesvirus Humano 8/genética , Células Endoteliais , Endotélio Vascular/patologiaRESUMO
OBJECTIVES: Lipedema, a poorly understood chronic disease of adipose hyper-deposition, is often mistaken for obesity and causes significant impairment to mobility and quality-of-life. To identify molecular mechanisms underpinning lipedema, we employed comprehensive omics-based comparative analyses of whole tissue, adipocyte precursors (adipose-derived stem cells (ADSCs)), and adipocytes from patients with or without lipedema. METHODS: We compared whole-tissues, ADSCs, and adipocytes from body mass index-matched lipedema (n = 14) and unaffected (n = 10) patients using comprehensive global lipidomic and metabolomic analyses, transcriptional profiling, and functional assays. RESULTS: Transcriptional profiling revealed >4400 significant differences in lipedema tissue, with altered levels of mRNAs involved in critical signaling and cell function-regulating pathways (e.g., lipid metabolism and cell-cycle/proliferation). Functional assays showed accelerated ADSC proliferation and differentiation in lipedema. Profiling lipedema adipocytes revealed >900 changes in lipid composition and >600 differentially altered metabolites. Transcriptional profiling of lipedema ADSCs and non-lipedema ADSCs revealed significant differential expression of >3400 genes including some involved in extracellular matrix and cell-cycle/proliferation signaling pathways. One upregulated gene in lipedema ADSCs, Bub1, encodes a cell-cycle regulator, central to the kinetochore complex, which regulates several histone proteins involved in cell proliferation. Downstream signaling analysis of lipedema ADSCs demonstrated enhanced activation of histone H2A, a key cell proliferation driver and Bub1 target. Critically, hyperproliferation exhibited by lipedema ADSCs was inhibited by the small molecule Bub1 inhibitor 2OH-BNPP1 and by CRISPR/Cas9-mediated Bub1 gene depletion. CONCLUSION: We found significant differences in gene expression, and lipid and metabolite profiles, in tissue, ADSCs, and adipocytes from lipedema patients compared to non-affected controls. Functional assays demonstrated that dysregulated Bub1 signaling drives increased proliferation of lipedema ADSCs, suggesting a potential mechanism for enhanced adipogenesis in lipedema. Importantly, our characterization of signaling networks driving lipedema identifies potential molecular targets, including Bub1, for novel lipedema therapeutics.
Assuntos
Lipedema , Adipócitos/metabolismo , Adipogenia/genética , Tecido Adiposo/metabolismo , Diferenciação Celular/fisiologia , Humanos , Lipedema/genética , LipídeosRESUMO
VEGF-C and VEGF-D are secreted glycoproteins that induce angiogenesis and lymphangiogenesis in cancer, thereby promoting tumor growth and spread. They exhibit structural homology and activate VEGFR-2 and VEGFR-3, receptors on endothelial cells that signal for growth of blood vessels and lymphatics. VEGF-C and VEGF-D were thought to exhibit similar bioactivities, yet recent studies indicated distinct signaling mechanisms (e.g. tumor-derived VEGF-C promoted expression of the prostaglandin biosynthetic enzyme COX-2 in lymphatics, a response thought to facilitate metastasis via the lymphatic vasculature, whereas VEGF-D did not). Here we explore the basis of the distinct bioactivities of VEGF-D using a neutralizing antibody, peptide mapping, and mutagenesis to demonstrate that the N-terminal α-helix of mature VEGF-D (Phe93-Arg108) is critical for binding VEGFR-2 and VEGFR-3. Importantly, the N-terminal part of this α-helix, from Phe93 to Thr98, is required for binding VEGFR-3 but not VEGFR-2. Surprisingly, the corresponding part of the α-helix in mature VEGF-C did not influence binding to either VEGFR-2 or VEGFR-3, indicating distinct determinants of receptor binding by these growth factors. A variant of mature VEGF-D harboring a mutation in the N-terminal α-helix, D103A, exhibited enhanced potency for activating VEGFR-3, was able to promote increased COX-2 mRNA levels in lymphatic endothelial cells, and had enhanced capacity to induce lymphatic sprouting in vivo This mutant may be useful for developing protein-based therapeutics to drive lymphangiogenesis in clinical settings, such as lymphedema. Our studies shed light on the VEGF-D structure/function relationship and provide a basis for understanding functional differences compared with VEGF-C.
Assuntos
Endotélio Vascular/patologia , Linfangiogênese , Vasos Linfáticos/patologia , Neovascularização Patológica/patologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator D de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Anticorpos Neutralizantes , Células Cultivadas , Derme/metabolismo , Derme/patologia , Endotélio Vascular/metabolismo , Feminino , Humanos , Vasos Linfáticos/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Mutagênese Sítio-Dirigida , Mutação/genética , Neovascularização Patológica/metabolismo , Transdução de Sinais , Fator C de Crescimento do Endotélio Vascular/química , Fator C de Crescimento do Endotélio Vascular/genética , Fator D de Crescimento do Endotélio Vascular/química , Fator D de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genéticaRESUMO
Mutations in SOX18, VEGFC and Vascular Endothelial Growth Factor 3 underlie the hereditary lymphatic disorders hypotrichosis-lymphedema-telangiectasia (HLT), Milroy-like lymphedema and Milroy disease, respectively. Genes responsible for hereditary lymphedema are key regulators of lymphatic vascular development in the embryo. To identify novel modulators of lymphangiogenesis, we used a mouse model of HLT (Ragged Opossum) and performed gene expression profiling of aberrant dermal lymphatic vessels. Expression studies and functional analysis in zebrafish and mice revealed one candidate, ArfGAP with RhoGAP domain, Ankyrin repeat and PH domain 3 (ARAP3), which is down-regulated in HLT mouse lymphatic vessels and necessary for lymphatic vascular development in mice and zebrafish. We position this known regulator of cell behaviour during migration as a mediator of the cellular response to Vegfc signalling in lymphatic endothelial cells in vitro and in vivo. Our data refine common mechanisms that are likely to contribute during both development and the pathogenesis of lymphatic vascular disorders.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica , Hipotricose/genética , Linfangiogênese/genética , Linfedema/genética , Telangiectasia/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Movimento Celular/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Vasos Linfáticos/metabolismo , Camundongos , Camundongos Knockout , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Síndrome , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Peixe-ZebraRESUMO
VEGF-D is an angiogenic and lymphangiogenic glycoprotein that can be proteolytically processed generating various forms differing in subunit composition due to the presence or absence of N- and C-terminal propeptides. These propeptides flank the central VEGF homology domain, that contains the binding sites for VEGF receptors (VEGFRs), but their biological functions were unclear. Characterization of propeptide function will be important to clarify which forms of VEGF-D are biologically active and therefore clinically relevant. Here we use VEGF-D mutants deficient in either propeptide, and in the capacity to process the remaining propeptide, to monitor the functions of these domains. We report for the first time that VEGF-D binds heparin, and that the C-terminal propeptide significantly enhances this interaction (removal of this propeptide from full-length VEGF-D completely prevents heparin binding). We also show that removal of either the N- or C-terminal propeptide is required for VEGF-D to drive formation of VEGFR-2/VEGFR-3 heterodimers which have recently been shown to positively regulate angiogenic sprouting. The mature form of VEGF-D, lacking both propeptides, can also promote formation of these receptor heterodimers. In a mouse tumor model, removal of only the C-terminal propeptide from full-length VEGF-D was sufficient to enhance angiogenesis and tumor growth. In contrast, removal of both propeptides is required for high rates of lymph node metastasis. The findings reported here show that the propeptides profoundly influence molecular interactions of VEGF-D with VEGF receptors, co-receptors, and heparin, and its effects on tumor biology.
Assuntos
Heparina/química , Fator D de Crescimento do Endotélio Vascular/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular , Cromatografia de Afinidade , Células Endoteliais/metabolismo , Feminino , Humanos , Linfangiogênese , Metástase Linfática , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/patologia , Neovascularização Patológica/metabolismo , Neuropilinas/metabolismo , Ligação Proteica , Multimerização Proteica , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Precursores de Proteínas/fisiologia , Estrutura Terciária de Proteína , Deleção de Sequência , Fator D de Crescimento do Endotélio Vascular/química , Fator D de Crescimento do Endotélio Vascular/genética , Fator D de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/químicaRESUMO
The lymphatic system plays a key role in tissue fluid regulation and tumour metastasis, and lymphatic defects underlie many pathological states including lymphoedema, lymphangiectasia, lymphangioma and lymphatic dysplasia. However, the origins of the lymphatic system in the embryo, and the mechanisms that direct growth of the network of lymphatic vessels, remain unclear. Lymphatic vessels are thought to arise from endothelial precursor cells budding from the cardinal vein under the influence of the lymphatic hallmark gene Prox1 (prospero homeobox 1; ref. 4). Defects in the transcription factor gene SOX18 (SRY (sex determining region Y) box 18) cause lymphatic dysfunction in the human syndrome hypotrichosis-lymphoedema-telangiectasia, suggesting that Sox18 may also play a role in lymphatic development or function. Here we use molecular, cellular and genetic assays in mice to show that Sox18 acts as a molecular switch to induce differentiation of lymphatic endothelial cells. Sox18 is expressed in a subset of cardinal vein cells that later co-express Prox1 and migrate to form lymphatic vessels. Sox18 directly activates Prox1 transcription by binding to its proximal promoter. Overexpression of Sox18 in blood vascular endothelial cells induces them to express Prox1 and other lymphatic endothelial markers, while Sox18-null embryos show a complete blockade of lymphatic endothelial cell differentiation from the cardinal vein. Our findings demonstrate a critical role for Sox18 in developmental lymphangiogenesis, and suggest new avenues to investigate for therapeutic management of human lymphangiopathies.
Assuntos
Diferenciação Celular , Vasos Linfáticos/citologia , Vasos Linfáticos/embriologia , Fatores de Transcrição SOXF/metabolismo , Animais , Biomarcadores/análise , Movimento Celular , Células Cultivadas , Edema/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Efrina-B2/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Hipotricose/genética , Linfangiogênese , Vasos Linfáticos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Regiões Promotoras Genéticas/genética , Fatores de Transcrição SOXF/deficiência , Fatores de Transcrição SOXF/genética , Telangiectasia/genética , Proteínas Supressoras de Tumor/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Veias/citologiaRESUMO
Background: Lymphedema is common after lymphatic damage in cancer treatment, with negative impacts on function and quality of life. Evidence suggests that blood vessel microvasculature is sensitive to irradiation and trauma; however, despite knowledge regarding dedicated mural blood supply to arteries and veins (vasa vasorum), equivalent blood vessels supplying lymphatics have not been characterized. We studied collecting lymphatics for dedicated mural blood vessels in our series of 500 lymphaticovenous anastomosis procedures for lymphedema, and equivalent controls. Methods: Microscopic images of lymphatics from lymphedema and control patients were analyzed for lymphatic wall vascular density. Collecting lymphatics from 20 patients with lymphedema and 10 control patients were sampled for more detailed analysis (podoplanin immunostaining, light/confocal microscopy, microcomputed tomography, and transmission electron microscopy) to assess lymphatic wall ultrastructure and blood supply. Results: Analysis revealed elaborate, dense blood microvessel networks associating with lymphatic walls in lymphedema patients and smaller equivalent vessels in controls. These vasa vasora or "arteria lymphatica" were supplied by regular axial blood vessels, parallel to lymphatic microperforators linking dermal and collecting lymphatics. Lymphatic walls were thicker in lymphedema patients than controls, with immunohistochemistry, computed tomography, transmission electron microscopy, and confocal microscopy characterizing abnormal blood vessels (altered appearance, thickened walls, elastin loss, narrow lumina, and fewer red blood cells) on these lymphatic walls. Conclusions: Dedicated blood vessels on lymphatics are significantly altered in lymphedema. A better understanding of the role of these vessels may reveal mechanistic clues into lymphedema pathophysiology and technical aspects of lymphedema microsurgery, and suggest potential novel therapeutic targets.
RESUMO
Background: Lipedema is a progressive condition involving excessive deposition of subcutaneous adipose tissue, predominantly in the lower limbs, which severely compromises quality of life. Despite the impact of lipedema, its molecular and genetic bases are poorly understood, making diagnosis and treatment difficult. Historical evaluation of individuals with lipedema indicates a positive family history in 60%-80% of cases; however, genetic investigation of larger family cohorts is required. Here, we report the largest family-based sequencing study to date, aimed at identifying genetic changes that contribute to lipedema. Methods and Results: DNA samples from 31 individuals from 9 lipedema families were analyzed to reveal genetic variants predicted to alter protein function, yielding candidate variants in 469 genes. We did not identify any individual genes that contained likely disease-causing variants across all participating families. However, gene ontology analysis highlighted vasopressin receptor activity, microfibril binding, and patched binding as statistically significantly overrepresented categories for the set of candidate variants. Conclusions: Our study suggests that lipedema is not caused by a single exomic genetic factor, providing support for the hypothesis of genetic heterogeneity in the etiology of lipedema. As the largest study of its kind in the lipedema field, the results advance our understanding of the disease and provide a roadmap for future research aimed at improving the lives of those affected by lipedema.
Assuntos
Lipedema , Humanos , Lipedema/diagnóstico , Qualidade de Vida , Gordura Subcutânea , Diagnóstico DiferencialRESUMO
Introduction: Surgery and radiotherapy are key cancer treatments and the leading causes of damage to the lymphatics, a vascular network critical to fluid homeostasis and immunity. The clinical manifestation of this damage constitutes a devastating side-effect of cancer treatment, known as lymphoedema. Lymphoedema is a chronic condition evolving from the accumulation of interstitial fluid due to impaired drainage via the lymphatics and is recognised to contribute significant morbidity to patients who survive their cancer. Nevertheless, the molecular mechanisms underlying the damage inflicted on lymphatic vessels, and particularly the lymphatic endothelial cells (LEC) that constitute them, by these treatment modalities, remain poorly understood. Methods: We used a combination of cell based assays, biochemistry and animal models of lymphatic injury to examine the molecular mechanisms behind LEC injury and the subsequent effects on lymphatic vessels, particularly the role of the VEGF-C/VEGF-D/VEGFR-3 lymphangiogenic signalling pathway, in lymphatic injury underpinning the development of lymphoedema. Results: We demonstrate that radiotherapy selectively impairs key LEC functions needed for new lymphatic vessel growth (lymphangiogenesis). This effect is mediated by attenuation of VEGFR-3 signalling and downstream signalling cascades. VEGFR-3 protein levels were downregulated in LEC that were exposed to radiation, and LEC were therefore selectively less responsive to VEGF-C and VEGF-D. These findings were validated in our animal models of radiation and surgical injury. Discussion: Our data provide mechanistic insight into injury sustained by LEC and lymphatics during surgical and radiotherapy cancer treatments and underscore the need for alternative non-VEGF-C/VEGFR-3-based therapies to treat lymphoedema.
RESUMO
AIMS: Important prognostic factors in patients with cutaneous melanoma include primary tumour thickness/depth of invasion, ulceration and mitotic rate, and the presence of tumour cells in regional lymph nodes. More recently, features of stromal components, such as blood and lymphatic vessel density, have been suggested as additional indicators of metastatic potential. Our aim was to investigate the relationship between tumour lymphatic vessels and lymph node metastasis. METHODS AND RESULTS: Metastasizing (n = 11) and non-metastasizing (n = 11) primary melanoma samples matched for depth/thickness, mitotic rate and ulceration were examined for lymphatic vessel density (LVD) in the primary tumour, using an antibody to podoplanin. Significant differences were found between LVD (vessels/unit area) in the peripheral (5.73 ± 0.67) versus central (1.72 ± 0.42) regions of the metastasizing tumour group (P < 0.001), and between LVD in the peripheral areas of metastasizing (5.73 ± 0.67) versus non-metastasizing (4.21 ± 0.37) tumours (P < 0.01). No overall difference was found between total average LVD in the two tumour groups or between their vessel morphology. CONCLUSION: Our results show that LVD is associated with risk of lymph node metastasis. Furthermore, the ratio of peripheral LVD:central LVD is a useful marker of primary melanomas that are likely to metastasize to lymph nodes.
Assuntos
Linfangiogênese/fisiologia , Vasos Linfáticos/patologia , Melanoma/patologia , Invasividade Neoplásica/patologia , Neoplasias Cutâneas/patologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imuno-Histoquímica , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Biópsia de Linfonodo SentinelaRESUMO
VEGF-D is a mitogen for endothelial cells that promotes tumor growth and metastatic spread in animal models, and expression of which correlates with lymph node metastasis in some human cancers. It is secreted from the cell as a full-length form with propeptides flanking a central region containing binding sites for VEGFR-2 and VEGFR-3, receptors that signal for angiogenesis and lymphangiogenesis. The propeptides can be cleaved from VEGF-D, enhancing affinity for VEGFR-2 and VEGFR-3 in vitro; however, the importance of this processing in cancer is unclear. To explore the necessity of processing for the effects of VEGF-D in cancer, we use a mutant full-length form that cannot be processed, and show that, in contrast to full-length VEGF-D that is processed, this mutant does not promote tumor growth and lymph node metastasis in a mouse tumor model. Processing of VEGF-D is required for tumor angiogenesis, lymphangiogenesis, and recruitment of tumor-associated macrophages. These observations may be explained by the requirement of processing for VEGF-D to bind neuropilin receptors and activate VEGFR-2. Our results indicate that proteolytic processing is necessary for VEGF-D to promote the growth and spread of cancer, and suggest that enzymes catalyzing this processing could be targets for antimetastatic therapeutics.
Assuntos
Metástase Neoplásica/patologia , Metástase Neoplásica/fisiopatologia , Fator D de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Linfangiogênese/fisiologia , Macrófagos/patologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiologia , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/patologia , Neoplasias Experimentais/fisiopatologia , Neovascularização Patológica/fisiopatologia , Neuropilinas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transplante Heterólogo , Fator D de Crescimento do Endotélio Vascular/genética , Fator D de Crescimento do Endotélio Vascular/fisiologiaRESUMO
[This corrects the article DOI: 10.1016/j.dib.2022.107828.].
RESUMO
Radiotherapy injury to cells of the skin and subcutaneous tissue is an inevitable consequence of external beam radiation for treatment of cancer. This sublethal injury to normal tissues plays a significant role in the development of fibrosis, lymphedema, impaired wound healing, and recurrent infections. To elucidate the transcriptional changes that occur in cells of the skin and soft tissues after radiotherapy injury, we performed genome-wide RNA-sequencing comparing irradiated cells (10Gy) with non-irradiated (0Gy) controls in normal human dermal fibroblasts, normal human keratinocytes, human microvascular endothelial cells, human dermal lymphatic endothelial cells, pericytes and adipose derived stem cell populations. These data are publicly available from the Gene Expression Omnibus database (accession number GSE184119). Further insights can be gained by comparing the mRNA signatures arising from radiation injury derived from these data to publicly available signatures from other studies involving similar or different tissue types. These global targets hold potential for manipulation to mitigate radiotherapy soft tissue injury.
RESUMO
Propranolol and atenolol, current therapies for problematic infantile hemangioma (IH), are composed of R(+) and S(-) enantiomers: the R(+) enantiomer is largely devoid of beta blocker activity. We investigated the effect of R(+) enantiomers of propranolol and atenolol on the formation of IH-like blood vessels from hemangioma stem cells (HemSCs) in a murine xenograft model. Both R(+) enantiomers inhibited HemSC vessel formation in vivo. In vitro, similar to R(+) propranolol, both atenolol and its R(+) enantiomer inhibited HemSC to endothelial cell differentiation. As our previous work implicated the transcription factor sex-determining region Y (SRY) box transcription factor 18 (SOX18) in propranolol-mediated inhibition of HemSC to endothelial differentiation, we tested in parallel a known SOX18 small-molecule inhibitor (Sm4) and show that this compound inhibited HemSC vessel formation in vivo with efficacy similar to that seen with the R(+) enantiomers. We next examined how R(+) propranolol alters SOX18 transcriptional activity. Using a suite of biochemical, biophysical, and quantitative molecular imaging assays, we show that R(+) propranolol directly interfered with SOX18 target gene trans-activation, disrupted SOX18-chromatin binding dynamics, and reduced SOX18 dimer formation. We propose that the R(+) enantiomers of widely used beta blockers could be repurposed to increase the efficiency of current IH treatment and lower adverse associated side effects.
Assuntos
Atenolol/farmacologia , Hemangioma , Células-Tronco Neoplásicas/metabolismo , Neovascularização Patológica , Propranolol/farmacologia , Animais , Hemangioma/irrigação sanguínea , Hemangioma/tratamento farmacológico , Hemangioma/metabolismo , Humanos , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
OBJECTIVE: Clinical studies indicate that anti-CD20 B-cell depletion may be an effective multiple sclerosis (MS) therapy. We investigated mechanisms of anti-CD20-mediated immune modulation using 2 paradigms of experimental autoimmune encephalomyelitis (EAE). METHODS: Murine EAE was induced by recombinant myelin oligodendrocyte glycoprotein (rMOG), a model in which B cells are considered to contribute pathogenically, or MOG peptide (p)35-55, which does not require B cells. RESULTS: In EAE induced by rMOG, B cells became activated and, when serving as antigen-presenting cells (APCs), promoted differentiation of proinflammatory MOG-specific Th1 and Th17 cells. B-cell depletion prevented or reversed established rMOG-induced EAE, which was associated with less central nervous system (CNS) inflammation, elimination of meningeal B cells, and reduction of MOG-specific Th1 and Th17 cells. In contrast, in MOG p35-55-induced EAE, B cells did not become activated or efficiently polarize proinflammatory MOG-specific T cells, similar to naive B cells. In this setting, anti-CD20 treatment exacerbated EAE, and did not impede development of Th1 or Th17 cells. Irrespective of the EAE model used, B-cell depletion reduced the frequency of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg), and increased the proinflammatory polarizing capacity of remaining myeloid APCs. INTERPRETATION: Our study highlights distinct roles for B cells in CNS autoimmunity. Clinical benefit from anti-CD20 treatment may relate to inhibition of proinflammatory B cell APC function. In certain clinical settings, however, elimination of unactivated B cells, which participate in regulation of T cells and other APC, may be undesirable. Differences in immune responses to MOG protein and peptide may be important considerations when choosing an EAE model for testing novel B cell-targeting agents for MS.
Assuntos
Anticorpos/uso terapêutico , Antígenos CD20/imunologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/fisiopatologia , Ativação Linfocitária/imunologia , Animais , Antígenos CD20/genética , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Feminino , Citometria de Fluxo/métodos , Fatores de Transcrição Forkhead/metabolismo , Glicoproteínas/efeitos adversos , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos/efeitos adversos , Estatísticas não Paramétricas , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologiaRESUMO
Multiple sclerosis (MS) is an inflammatory, demyelinating and neurodegenerative disease of the central nervous system (CNS). Despite progress in understanding immunogenetic aspects of this disease, the mechanisms involved in lesion formation are unknown. To gain new insights into the neuropathology of MS, we used an innovative integration of Fourier transform infrared (FT-IR) microspectroscopy, bioinformatics, and a synchrotron light source to analyze macromolecular changes in the CNS during the course and prevention of experimental autoimmune encephalomyelitis (EAE), an animal model for MS. We report that subtle chemical and structural changes not observed by conventional histology were detected before the onset of clinical signs of EAE. Moreover, trained artificial neural networks (ANNs) could discriminate, with excellent sensitivity and specificity, pathology from surrounding tissues and the early stage of the disease progression. Notably, we show that this novel measurement platform can detect characteristic differences in biochemical composition of lesion pathology in animals partially protected against EAE by vaccination with Nogo-A, an inhibitor of neural outgrowth, demonstrating the potential for automated screening and evaluation of new therapeutic agents.
Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/terapia , Animais , Automação , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental/patologia , Feminino , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla , Proteínas da Mielina/imunologia , Proteínas da Mielina/uso terapêutico , Redes Neurais de Computação , Proteínas Nogo , Peptídeos/imunologia , Peptídeos/uso terapêutico , Sensibilidade e Especificidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Fatores de Tempo , VacinaçãoRESUMO
Fat grafting is a well-established surgical technique used in plastic surgery to restore deficient tissue, and more recently, for its putative regenerative properties. Despite more frequent use of fat grafting, however, a scientific understanding of the mechanisms underlying either survival or remedial benefits of grafted fat remain lacking. Clinical use of fat grafts for breast reconstruction in tissues damaged by radiotherapy first provided clues regarding the clinical potential of stem cells to drive tissue regeneration. Healthy fat introduced into irradiated tissues appeared to reverse radiation injury (fibrosis, scarring, contracture and pain) clinically; a phenomenon since validated in several animal studies. In the quest to explain and enhance these therapeutic effects, adipose-derived stem cells (ADSCs) were suggested as playing a key role and techniques to enrich ADSCs in fat, in turn, followed. Stem cells - the body's rapid response 'road repair crew' - are on standby to combat tissue insults. ADSCs may exert influences either by releasing paracrine-signalling factors alone or as cell-free extracellular vesicles (EVs, exosomes). Alternatively, ADSCs may augment vital immune/inflammatory processes; or themselves differentiate into mature adipose cells to provide the 'building-blocks' for engineered tissue. Regardless, adipose tissue constitutes an ideal source for mesenchymal stem cells for therapeutic application, due to ease of harvest and processing; and a relative abundance of adipose tissue in most patients. Here, we review the clinical applications of fat grafting, ADSC-enhanced fat graft, fat stem cell therapy; and the latest evolution of EVs and nanoparticles in healing, cancer and neurodegenerative and multiorgan disease.
RESUMO
Cancer patients often require radiotherapy (RTx) to enhance their survival. Unfortunately, RTx also damages nearby healthy non-cancer tissues, leading to progressive fibrotic soft-tissue injury, consisting of pain, contracture, tissue-breakdown, infection, and lymphoedema. Mechanisms underlying the clinically observed ability of fat grafting to ameliorate some of these effects, however, are poorly understood. It was hypothesized that RTx significantly alters fibroblast cell function and the paracrine secretome of adipose-derived stem cells (ADSC) may mitigate these changes. METHODS: To investigate cellular changes resulting in the fibrotic side-effects of RTx, cultured normal human dermal fibroblasts (NHDF) were irradiated (10Gy), then studied using functional assays that reflect key fibroblast functions, and compared with unirradiated controls. RNA-Seq and targeted microarrays (with specific examination of TGFß) were performed to elucidate altered gene pathways. Finally, conditioned-media from ADSC was used to treat irradiated fibroblasts and model fat graft surgery. RESULTS: RTx altered NHDF morphology, with cellular functional changes reflecting transition into a more invasive phenotype: increased migration, adhesion, contractility, and disordered invasion. Changes in genes regulating collagen and MMP homeostasis and cell-cycle progression were also detected. However, TGFß was not identified as a key intracellular regulator of the fibroblast response. Finally, treatment with ADSC-conditioned media reversed the RTx-induced hypermigratory state of NHDF. CONCLUSIONS: Our findings regarding cellular and molecular changes in irradiated fibroblasts help explain clinical manifestations of debilitating RTx-induced fibrosis. ADSC-secretome-mediated reversal indicated that these constituents may be used to combat the devastating side-effects of excessive unwanted fibrosis in RTx and other human fibrotic diseases.
RESUMO
Chemokines are a family of small protein cytokines that act as chemoattractants to migrating cells, in particular those of the immune system. They are categorized functionally as either homeostatic, constitutively produced by tissues for basal levels of cell migration, or inflammatory, where they are generated in association with a pathological inflammatory response. While the extravasation of leukocytes via blood vessels is a key step in cells entering the tissues, the lymphatic vessels also serve as a conduit for cells that are recruited and localized through chemoattractant gradients. Furthermore, the growth and remodeling of lymphatic vessels in pathologies is influenced by chemokines and their receptors expressed by lymphatic endothelial cells (LECs) in and around the pathological tissue. In this review we summarize the diverse role played by specific chemokines and their receptors in shaping the interaction of lymphatic vessels, immune cells, and other pathological cell types in physiology and disease.
Assuntos
Quimiocinas/imunologia , Vasos Linfáticos/imunologia , Animais , Citocinas/imunologia , Células Endoteliais/imunologia , Humanos , Inflamação/imunologiaRESUMO
Metastasis via the lymphatic vasculature is an important step in cancer progression. The formation of new lymphatic vessels (lymphangiogenesis), or remodeling of existing lymphatics, is thought to facilitate the entry and transport of tumor cells into lymphatic vessels and on to distant organs. The migration of lymphatic endothelial cells (LEC) toward guidance cues is critical for lymphangiogenesis. While chemokines are known to provide directional navigation for migrating immune cells, their role in mediating LEC migration during tumor-associated lymphangiogenesis is not well defined. Here, we undertook gene profiling studies to identify chemokine-chemokine receptor pairs that are involved in tumor lymphangiogenesis associated with lymph node metastasis. CCL27 and CCL28 were expressed in tumor cells with metastatic potential, while their cognate receptor, CCR10, was expressed by LECs and upregulated by the lymphangiogenic growth factor VEGFD and the proinflammatory cytokine TNFα. Migration assays demonstrated that LECs are attracted to both CCL27 and CCL28 in a CCR10-dependent manner, while abnormal lymphatic vessel patterning in CCR10-deficient mice confirmed the significant role of CCR10 in lymphatic patterning. In vivo analyses showed that LECs are recruited to a CCL27 or CCL28 source, while VEGFD was required in combination with these chemokines to enable formation of coherent lymphatic vessels. Moreover, tumor xenograft experiments demonstrated that even though CCL27 expression by tumors enhanced LEC recruitment, the ability to metastasize was dependent on the expression of VEGFD. These studies demonstrate that CCL27 and CCL28 signaling through CCR10 may cooperate with inflammatory mediators and VEGFD during tumor lymphangiogenesis. SIGNIFICANCE: The study shows that the remodeling of lymphatic vessels in cancer is influenced by CCL27 and CCL28 chemokines, which may provide a future target to modulate metastatic spread.