Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 5(1): e1000344, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19165319

RESUMO

The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the approximately 18,000 families of orthologous genes, we found approximately 2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genome's long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome.


Assuntos
Escherichia coli/genética , Genoma Bacteriano , Elementos de DNA Transponíveis , Evolução Molecular , Genética , Genoma , Genômica , Funções Verossimilhança , Modelos Biológicos , Modelos Genéticos , Filogenia , Polimorfismo Genético , Recombinação Genética
2.
J Comput Biol ; 18(9): 1155-65, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21899422

RESUMO

Comparison of closely related bacterial genomes has revealed the presence of highly conserved sequences forming a "backbone" that is interrupted by numerous, less conserved, DNA fragments. Segmentation of bacterial genomes into backbone and variable regions is particularly useful to investigate, among other things, bacterial genome evolution. Several software tools have been designed to compare complete bacterial chromosomes and a few online databases store pre-computed genome comparisons. However, very few statistical methods are available to evaluate the reliability of these software tools and to compare the results obtained with them. To fill this gap, we have developed two local scores to measure the robustness of bacterial genome segmentations. Our method uses a simulation procedure based on random perturbations of the compared genomes. The two scores described in this article provide useful information and are easy to implement, and their interpretation is intuitive. We show that they are suited to discriminate between robust and non-robust segmentations when genome aligners such as MAUVE and MGA are used.


Assuntos
Sequência Conservada , Genoma Bacteriano , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Calibragem , Escherichia coli/genética , Variação Genética , Modelos Genéticos , Pseudomonas syringae/genética , Streptococcus pyogenes/genética
3.
Microbiology (Reading) ; 150(Pt 7): 2409-2414, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15256582

RESUMO

Streptococcus pneumoniae is a human pathogen that is naturally transformable. In this study a major component of the homologous recombination pathway, the RexAB exonuclease/helicase, was characterized. rexA and rexB insertional mutants were constructed using mariner mutagenesis and found to have identical phenotypes. Both rexAB mutants displayed poor cell viability, reduced double-strand exonuclease activity, UV sensitivity and a reduced level of gene conversion compared to the wild-type strain. No effect was observed on plasmid and chromosomal transformation efficiencies. These results indicate that in S. pneumoniae, RexAB is required for DNA repair, but not for chromosomal transformation and plasmid establishment.


Assuntos
DNA Helicases/genética , Reparo do DNA , Exodesoxirribonucleases/genética , Mutação , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/genética , DNA Helicases/metabolismo , Elementos de DNA Transponíveis , DNA Bacteriano/metabolismo , Exodesoxirribonucleases/metabolismo , Humanos , Plasmídeos , Recombinação Genética , Streptococcus pneumoniae/enzimologia , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa