Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361679

RESUMO

Early detection of tumor cells by identifying universal Tumor Associated Antigens (TAA) can drastically change our diagnostic, theranostic and therapeutic possibilities to cure cancer. Human Telomerase Reverse Transcriptase (hTERT), a hallmark of cancer, could act as an optimal TAA candidate. Here we report about the development of a monoclonal antibody against hTERT peptide (α-hTERT mAb) presented on the surface of cancer cells and its possible applications as a pan-cancer marker. Liquid biopsies, an innovative tool in precision oncology, comprising the noninvasive analysis of circulating tumor-derived material to counteract limitations associated with tissue biopsies. Within the tumor circulome, the US Food and Drug Administration already approved the use of circulating tumor cells (CTCs) as valid liquid biopsies. However, currently CTCs are being trapped using antibodies against specific cancer types, with anti EpCAM as the most common antibody, directed mainly against solid tumors. Moreover, the precision medicine approach is based on specific cancer type directed antibodies. Our novel mAb against the hTERT 16-mer peptide, corresponding to amino acids 611-626, is capable of detecting various types of cancer cells both in vitro and ex vivo from tumors of patients with either hematological or solid tumors. This antibody does not bind to normal lymphocytes cells. Cleavage of our antibody to F(ab')2 fragments increased its binding specificity to the tested cancer cells. Future studies may point to the use of this antibody in the procedure of capturing CTCs.


Assuntos
Células Neoplásicas Circulantes , Telomerase , Humanos , Telomerase/metabolismo , Corpo Humano , Medicina de Precisão , Anticorpos Monoclonais , Peptídeos/metabolismo , Antígenos de Neoplasias
2.
J Med Chem ; 45(8): 1665-71, 2002 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-11931620

RESUMO

Somatostatin-14 (somatostatin) and its clinically available analogues octreotide, lanreotide, and vapreotide are potent inhibitors of growth hormone, insulin, and glucagon release. Recently, a novel backbone cyclic somatostatin analogue c(GABA-Phe-Trp-(D)Trp-Lys-Thr-Phe-GlyC3-NH(2)) (analogue 1, PTR 3173) that possesses in vivo endocrine selectivity was described. This long-acting octapeptide exhibits high affinity to human recombinant somatostatin receptors (hsst) hsst2, hsst4, and hsst5. Its novel binding profile resulted in potent in vivo inhibition of growth hormone but not of insulin release. We report the synthesis, bioactivity, and structure-activity relationship studies of compounds related to 1. In these analogues, the lactam bridge of 1 was replaced by a backbone disulfide bridge. We present a novel approach for conformational constraint of peptides by utilizing sulfur-containing building units for on-resin backbone cyclization. These disulfide backbone cyclic analogues of 1 showed significant metabolic stability as tested in various enzyme mixtures. Receptor binding assays revealed different receptor selectivity profiles for these analogues in comparison to their prototype. It was found that analogues of 1, bearing a disulfide bridge, had increased selectivity to hsst2 and hsst5; however, they exhibited weaker affinity to hsst4 as compared to 1. These studies imply that ring chemistry, ring size, and ring position of the peptide template may affect the receptor binding selectivity.


Assuntos
Dissulfetos/química , Peptídeos Cíclicos/síntese química , Receptores de Somatostatina/metabolismo , Somatostatina/análogos & derivados , Somatostatina/química , Animais , Células CHO , Clonagem Molecular , Cricetinae , Estabilidade de Medicamentos , Humanos , Técnicas In Vitro , Rim/metabolismo , Fígado/metabolismo , Conformação Molecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Ensaio Radioligante , Ratos , Relação Estrutura-Atividade
3.
J Mol Neurosci ; 39(1-2): 199-210, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19127447

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder with its motor phenomena due mostly to loss of dopamine-producing neurons in the substantia nigra. Pharmacological treatments aimed to increase the deficient dopaminergic neurotransmission are effective in ameliorating the cardinal symptoms, but none of these therapies is curative. It has been suggested that treatment with neurotrophic factors (NTFs) might protect and prevent death of the surviving dopaminergic neurons and induce proliferation of their axonal nerve terminals with reinnervations of the deafferented striatum. However, long-term delivery of such proteins into the CNS is problematic. We therefore aimed to differentiate ex vivo human bone marrow-derived mesenchymal stromal cells into astrocyte-like cells, capable of generating NTFs for future transplantation into basal ganglia of PD patients. Indeed, mesenchymal stromal cells treated with our novel astrocyte differentiation medium, present astrocyte-like morphology and express the astrocyte markers S100beta, glutamine synthetase and glial fibrillary acidic protein. Moreover, these astrocyte-like cells produce and secrete significant amounts of glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain-derived neurotrophic factor as indicated by messenger RNA, real-time polymerase chain reaction, ELISA, and Western blot analyses. Such NTF-producing cells transplanted into the striatum of 6-hydroxydopamine-lesioned rats, a model of PD, produced a progressive reduction in the apomorphine-induced contralateral rotations as well as behavioral improvement in rotor-rod and the "sunflower seeds" eating motor tests. Histological assessments revealed that the engrafted cells survived and expressed astrocyte and human markers and acted to regenerate the damaged dopaminergic nerve terminal system. Findings indicate that our novel procedure to induce NTF-producing astrocyte-like cells derived from human bone marrow stromal cells might become a promising and feasible autologous transplantation strategy for PD.


Assuntos
Astrócitos/fisiologia , Células da Medula Óssea/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Doença de Parkinson/terapia , Células Estromais/fisiologia , Adulto , Animais , Astrócitos/citologia , Comportamento Animal/fisiologia , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Fatores de Crescimento Neural/metabolismo , Testes Neuropsicológicos , Ratos , Ratos Sprague-Dawley , Células Estromais/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa