RESUMO
Temperature- and x-dependent Raman scattering studies of the charge-density-wave (CDW) amplitude modes in Cu(x)TiSe(2) show that the amplitude mode frequency omega(0) exhibits identical power-law scaling with the reduced temperature T/T(CDW) and the reduced Cu content x/x(c), i.e., omega(0) approximately (1-p)(0.15) for p=T/T(CDW) or x/x(c), suggesting that mode softening is independent of the control parameter used to approach the CDW transition. We provide evidence that x-dependent mode softening in Cu(x)TiSe(2) is associated with the reduction of the electron-phonon coupling constant, and that x-dependent "quantum" (T approximately 0) mode softening suggests the presence of a quantum critical point within the superconductor phase of Cu(x)TiSe(2).
RESUMO
Magnetic-field- and temperature-dependent Raman scattering studies of Ca3Ru2O7 reveal dramatic field-dependent properties arising from transitions between various complex orbital and magnetic phases, including a field-induced orbital-ordered to orbital-disordered transition (H(o) // hard axis), and a reentrant orbital-ordered to orbital-disordered to orbital-ordered transition (H(o) // easy axis). We find that the dramatic magnetic-field properties are most prevalent in a "mixed"-magnetic and -orbital phase regime, providing evidence for a strong connection between orbital phase inhomogeneity and "colossal" field effects in the ruthenates.
RESUMO
We report a Raman scattering study of low-temperature, pressure-induced melting of the charge-density-wave (CDW) phase of 1T-TiSe2. Our measurements reveal that the collapse of the CDW state occurs in three stages: (i) For P<5 kbar, the pressure dependence of the CDW amplitude mode energies and intensities are indicative of a "crystalline" CDW regime; (ii) for 5
25 kbar, the absence of amplitude modes reveals a metallic regime in which the CDW has melted.