Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Mol Cell Proteomics ; 21(10): 100281, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985624

RESUMO

Spermatozoa are central to fertilization and the evolutionary fitness of sexually reproducing organisms. As such, a deeper understanding of sperm proteomes (and associated reproductive tissues) has proven critical to the advancement of the fields of sexual selection and reproductive biology. Due to their extraordinary complexity, proteome depth-of-coverage is dependent on advancements in technology and related bioinformatics, both of which have made significant advancements in the decade since the last Drosophila sperm proteome was published. Here, we provide an updated version of the Drosophila melanogaster sperm proteome (DmSP3) using improved separation and detection methods and an updated genome annotation. Combined with previous versions of the sperm proteome, the DmSP3 contains a total of 3176 proteins, and we provide the first label-free quantitation of the sperm proteome for 2125 proteins. The top 20 most abundant proteins included the structural elements α- and ß-tubulins and sperm leucyl-aminopeptidases. Both gene content and protein abundance were significantly reduced on the X chromosome, consistent with prior genomic studies of X chromosome evolution. We identified 9 of the 16 Y-linked proteins, including known testis-specific male fertility factors. We also identified almost one-half of known Drosophila ribosomal proteins in the DmSP3. The role of this subset of ribosomal proteins in sperm is unknown. Surprisingly, our expanded sperm proteome also identified 122 seminal fluid proteins (Sfps), proteins originally identified in the accessory glands. We show that a significant fraction of 'sperm-associated Sfps' are recalcitrant to concentrated salt and detergent treatments, suggesting this subclass of Sfps are expressed in testes and may have additional functions in sperm, per se. Overall, our results add to a growing landscape of both sperm and seminal fluid protein biology and in particular provides quantitative evidence at the protein level for prior findings supporting the meiotic sex-chromosome inactivation model for male-specific gene and X chromosome evolution.


Assuntos
Proteínas de Drosophila , Proteoma , Animais , Masculino , Proteoma/metabolismo , Drosophila melanogaster/metabolismo , Drosophila/metabolismo , Detergentes , Sêmen/metabolismo , Espermatozoides/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Ribossômicas/metabolismo , Aminopeptidases/metabolismo
2.
Mol Cell Proteomics ; 18(Suppl 1): S23-S33, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30760537

RESUMO

Seminal fluid proteins (SFPs), the nonsperm component of male ejaculates produced by male accessory glands, are viewed as central mediators of reproductive fitness. SFPs effect both male and female post-mating functions and show molecular signatures of rapid adaptive evolution. Although Drosophila melanogaster, is the dominant insect model for understanding SFP evolution, understanding of SFP evolutionary causes and consequences require additional comparative analyses of close and distantly related taxa. Although SFP identification was historically challenging, advances in label-free quantitative proteomics expands the scope of studying other systems to further advance the field. Focused studies of SFPs has so far overlooked the proteomes of male reproductive glands and their inherent complex protein networks for which there is little information on the overall signals of molecular evolution. Here we applied label-free quantitative proteomics to identify the accessory gland proteome and secretome in Drosophila pseudoobscura,, a close relative of D. melanogaster,, and use the dataset to identify both known and putative novel SFPs. Using this approach, we identified 163 putative SFPs, 32% of which overlapped with previously identified D. melanogaster, SFPs and show that SFPs with known extracellular annotation evolve more rapidly than other proteins produced by or contained within the accessory gland. Our results will further the understanding of the evolution of SFPs and the underlying male accessory gland proteins that mediate reproductive fitness of the sexes.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteômica , Proteínas de Plasma Seminal/metabolismo , Estruturas Animais/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolução Molecular , Ontologia Genética , Redes Reguladoras de Genes , Masculino , Proteoma/metabolismo , Proteínas de Plasma Seminal/genética
3.
Mol Ecol ; 29(22): 4428-4441, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32939895

RESUMO

Despite holding a central role in fertilization, reproductive traits often show elevated rates of evolution and diversification. The rapid evolution of seminal fluid proteins (Sfps) within populations is predicted to cause mis-signalling between the male ejaculate and the female during and after mating resulting in postmating prezygotic (PMPZ) isolation between populations. Crosses between Drosophila montana populations show PMPZ isolation in the form of reduced fertilization success in both noncompetitive and competitive contexts. Here we test whether male ejaculate proteins produced in the accessory glands or ejaculatory bulb differ between populations using liquid chromatography tandem mass spectrometry. We find more than 150 differentially abundant proteins between populations that may contribute to PMPZ isolation, including a number of proteases, peptidases and several orthologues of Drosophila melanogaster Sfps known to mediate fertilization success. Males from the population that elicit the stronger PMPZ isolation after mating with foreign females typically produced greater quantities of Sfps. The accessory glands and ejaculatory bulb show enrichment for different gene ontology (GO) terms and the ejaculatory bulb contributes more differentially abundant proteins. Proteins with a predicted secretory signal evolve faster than nonsecretory proteins. Finally, we take advantage of quantitative proteomics data for three Drosophila species to determine shared and unique GO enrichments of Sfps between taxa and which potentially mediate PMPZ isolation. Our study provides the first high-throughput quantitative proteomic evidence showing divergence of reproductive proteins between populations that exhibit PMPZ isolation.


Assuntos
Proteínas de Drosophila , Proteômica , Isolamento Reprodutivo , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Masculino , Comportamento Sexual Animal
4.
Mol Biol Evol ; 34(6): 1403-1416, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28333336

RESUMO

Sexual selection is the pervasive force underlying the dramatic divergence of sperm form and function. Although it has been demonstrated that testis gene expression evolves rapidly, exploration of the proteomic basis of sperm diversity is in its infancy. We have employed a whole-cell proteomics approach to characterize sperm divergence among closely related Mus species that experience different sperm competition regimes and exhibit pronounced variation in sperm energetics, motility and fertilization capacity. Interspecific comparisons revealed significant abundance differences amongst proteins involved in fertilization capacity, including those that govern sperm-zona pellucida interactions, axoneme components and metabolic proteins. Ancestral reconstruction of relative testis size suggests that the reduction of zona pellucida binding proteins and heavy-chain dyneins was associated with a relaxation in sperm competition in the M. musculus lineage. Additionally, the decreased reliance on ATP derived from glycolysis in high sperm competition species was reflected in abundance decreases in glycolytic proteins of the principle piece in M. spretus and M. spicilegus. Comparison of protein abundance and stage-specific testis expression revealed a significant correlation during spermatid development when dynamic morphological changes occur. Proteins underlying sperm diversification were also more likely to be subject to translational repression, suggesting that sperm composition is influenced by the evolution of translation control mechanisms. The identification of functionally coherent classes of proteins relating to sperm competition highlights the utility of evolutionary proteomic analyses and reveals that both intensified and relaxed sperm competition can have a pronounced impact on the molecular composition of the male gamete.


Assuntos
Espermatogênese/genética , Espermatozoides/fisiologia , Animais , Evolução Biológica , Fertilização , Células Germinativas , Masculino , Preferência de Acasalamento Animal , Camundongos , Proteínas/metabolismo , Proteômica/métodos , Especificidade da Espécie , Interações Espermatozoide-Óvulo , Espermatozoides/metabolismo , Testículo/metabolismo , Zona Pelúcida
5.
BMC Genomics ; 18(1): 931, 2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-29197336

RESUMO

BACKGROUND: Rapid evolution is a hallmark of reproductive genetic systems and arises through the combined processes of sequence divergence, gene gain and loss, and changes in gene and protein expression. While studies aiming to disentangle the molecular ramifications of these processes are progressing, we still know little about the genetic basis of evolutionary transitions in reproductive systems. Here we conduct the first comparative analysis of sperm proteomes in Lepidoptera, a group that exhibits dichotomous spermatogenesis, in which males produce a functional fertilization-competent sperm (eupyrene) and an incompetent sperm morph lacking nuclear DNA (apyrene). Through the integrated application of evolutionary proteomics and genomics, we characterize the genomic patterns potentially associated with the origination and evolution of this unique spermatogenic process and assess the importance of genetic novelty in Lepidopteran sperm biology. RESULTS: Comparison of the newly characterized Monarch butterfly (Danaus plexippus) sperm proteome to those of the Carolina sphinx moth (Manduca sexta) and the fruit fly (Drosophila melanogaster) demonstrated conservation at the level of protein abundance and post-translational modification within Lepidoptera. In contrast, comparative genomic analyses across insects reveals significant divergence at two levels that differentiate the genetic architecture of sperm in Lepidoptera from other insects. First, a significant reduction in orthology among Monarch sperm genes relative to the remainder of the genome in non-Lepidopteran insect species was observed. Second, a substantial number of sperm proteins were found to be specific to Lepidoptera, in that they lack detectable homology to the genomes of more distantly related insects. Lastly, the functional importance of Lepidoptera specific sperm proteins is broadly supported by their increased abundance relative to proteins conserved across insects. CONCLUSIONS: Our results identify a burst of genetic novelty amongst sperm proteins that may be associated with the origin of heteromorphic spermatogenesis in ancestral Lepidoptera and/or the subsequent evolution of this system. This pattern of genomic diversification is distinct from the remainder of the genome and thus suggests that this transition has had a marked impact on lepidopteran genome evolution. The identification of abundant sperm proteins unique to Lepidoptera, including proteins distinct between specific lineages, will accelerate future functional studies aiming to understand the developmental origin of dichotomous spermatogenesis and the functional diversification of the fertilization incompetent apyrene sperm morph.


Assuntos
Evolução Biológica , Proteínas de Insetos/análise , Lepidópteros/metabolismo , Proteoma/análise , Proteômica/métodos , Espermatozoides/metabolismo , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genoma , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Lepidópteros/genética , Lepidópteros/crescimento & desenvolvimento , Masculino , Manduca/genética , Manduca/metabolismo , Análise do Sêmen , Alinhamento de Sequência , Análise de Sequência de DNA/métodos , Pré-Seleção do Sexo , Espermatozoides/química
7.
Mol Cell Proteomics ; 12(11): 3052-67, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23816990

RESUMO

Mass spectrometry based proteomics has facilitated sperm composition studies in several mammalian species but no studies have been undertaken in non-human primate species. Here we report the analysis of the 1247 proteins that comprise the Rhesus macaque (Macaca mulatta) sperm proteome (termed the MacSP). Comparative analysis with previously characterized mouse and human sperm proteomes reveals substantial levels of orthology (47% and 40% respectively) and widespread overlap of functional categories based on Gene Ontology analyses. Approximately 10% of macaque sperm genes (113/1247) are significantly under-expressed in the testis as compared with other tissues, which may reflect proteins specifically acquired during epididymal maturation. Phylogenetic and genomic analyses of three MacSP ADAMs (A-Disintegrin and Metalloprotease proteins), ADAM18-, 20- and 21-like, provides empirical support for sperm genes functioning in non-human primate taxa which have been subsequently lost in the lineages leading to humans. The MacSP contains proteasome proteins of the 20S core subunit, the 19S proteasome activator complex and an alternate proteasome activator PA200, raising the possibility that proteasome activity is present in mature sperm. Robust empirical characterization of the Rhesus sperm proteome should greatly expand the possibility for targeted molecular studies of spermatogenesis and fertilization in a commonly used model species for human infertility.


Assuntos
Macaca mulatta/genética , Macaca mulatta/metabolismo , Proteoma/genética , Proteoma/metabolismo , Espermatozoides/metabolismo , Animais , Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Masculino , Camundongos , Filogenia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Especificidade da Espécie , Espermatogênese/genética , Espermatogênese/fisiologia , Espectrometria de Massas em Tandem , Testículo/metabolismo , Distribuição Tecidual
8.
Nat Genet ; 38(12): 1440-5, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17099714

RESUMO

In addition to delivering a haploid genome to the egg, sperm have additional critical functions, including egg activation, origination of the zygote centrosome and delivery of paternal factors. Despite this, existing knowledge of the molecular basis of sperm form and function is limited. We used whole-sperm mass spectrometry to identify 381 proteins of the Drosophila melanogaster sperm proteome (DmSP). This approach identified mitochondrial, metabolic and cytoskeletal proteins, in addition to several new functional categories. We also observed nonrandom genomic clustering of sperm genes and underrepresentation on the X chromosome. Identification of widespread functional constraint on the proteome indicates that sexual selection has had a limited role in the overall evolution of D. melanogaster sperm. The relevance of the DmSP to the study of mammalian sperm function and fertilization mechanisms is demonstrated by the identification of substantial homology between the DmSP and proteins of the mouse axoneme accessory structure.


Assuntos
Drosophila melanogaster/genética , Proteoma , Espermatozoides/metabolismo , Animais , Mapeamento Cromossômico , Proteínas de Drosophila/genética , Proteínas de Drosophila/isolamento & purificação , Evolução Molecular , Feminino , Genoma de Inseto , Masculino , Proteoma/genética , Proteoma/isolamento & purificação , Espermatogênese/genética
9.
Nat Commun ; 15(1): 5815, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987616

RESUMO

The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer's disease (AD). Integration with complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link cell subpopulations and molecular networks with a broader disease-relevant context. We report snRNA-seq profiles from superior frontal gyrus samples from 101 well characterized subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in hematological parameters. We observed an AD-associated CD83(+) microglial subtype with unique molecular networks and which is associated with immunoglobulin IgG4 production in the transverse colon. Our major observations were replicated in two additional, independent snRNA-seq data sets. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal disease biology.


Assuntos
Doença de Alzheimer , Análise de Célula Única , Transcriptoma , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Masculino , Feminino , Idoso , Microglia/metabolismo , Idoso de 80 Anos ou mais , Oligodendroglia/metabolismo , Pessoa de Meia-Idade , Imunoglobulina G/metabolismo , Redes Reguladoras de Genes , Análise de Sequência de RNA , Encéfalo/metabolismo , Encéfalo/patologia , Perfilação da Expressão Gênica
10.
BMC Biol ; 10: 49; author reply 50, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22691264

RESUMO

BACKGROUND: Meiotic sex chromosome inactivation (MSCI) during spermatogenesis has been proposed as one of the evolutionary driving forces behind both the under-representation of male-biased genes on, and the gene movement out of, the X chromosome in Drosophila. However, the relevance of MSCI in shaping sex chromosome evolution is controversial. Here we examine two aspects of a recent study on testis gene expression (Mikhaylova and Nurminsky, BMC Biol 2011, 9:29) that failed to support the MSCI in Drosophila. First, Mikhaylova and Nurminsky found no differences between X-linked and autosomal genes based on the transcriptional profiling of the early testis development, and thus concluded that MSCI does not occur in D. melanogaster. Second, they also analyzed expression data from several D. melanogaster tissues and concluded that under-representation on the X chromosome is not an exclusive property of testis-biased genes, but instead, a general property of tissue-specific genes. RESULTS: By re-analyzing the Mikhaylova and Nurminsky's testis data and the expression data on several D. melanogaster tissues, we made two major findings that refuted their original claims. First, the developmental testis data has generally greater experimental error than conventional analyses, which reduced significantly the power to detect chromosomal differences in expression. Nevertheless, our re-analysis observed significantly lower expression of the X chromosome in the genomic transcriptomes of later development stages of the testis, which is consistent with the MSCI hypothesis. Second, tissue-specific genes are also in general enriched with genes more expressed in testes than in ovaries, that is testis-biased genes. By completely excluding from the analyses the testis-biased genes, which are known to be under-represented in the X, we found that all the other tissue-specific genes are randomly distributed between the X chromosome and the autosomes. CONCLUSIONS: Our findings negate the original study of Mikhaylova and Nurminsky, which concluded a lack of MSCI and generalized the pattern of paucity in the X chromosome for tissue-specific genes in Drosophila. Therefore, MSCI and other selection-based models such as sexual antagonism, dosage compensation, and meiotic-drive continue to be viable models as driving forces shaping the genomic distribution of male-related genes in Drosophila.


Assuntos
Drosophila/genética , Regulação da Expressão Gênica , Genes Ligados ao Cromossomo X , Inativação do Cromossomo X , Cromossomo X , Animais , Masculino
11.
Dev Dyn ; 241(1): 150-60, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21960044

RESUMO

BACKGROUND: Overlaps in spatial patterns of gene expression are frequently an initial clue to genetic interactions during embryonic development. However, manual inspection of images requires considerable time and resources impeding the discovery of important interactions because tens of thousands of images exist. The FlyExpress discovery platform was developed to facilitate data-driven comparative analysis of expression pattern images from Drosophila embryos. RESULTS: An image-based search of the BDGP and Fly-FISH datasets conducted in FlyExpress yields fewer but more precise results than text-based searching when the specific goal is to find genes with overlapping expression patterns. We also provide an example of a FlyExpress contribution to scientific discovery: an analysis of gene expression patterns for multigene family members revealed that spatial divergence is far more frequent than temporal divergence, especially after the maternal to zygotic transition. This discovery provides a new clue to molecular mechanisms whereby duplicated genes acquire novel functions. CONCLUSIONS: The application of FlyExpress to understanding the process by which new genes acquire novel functions is just one of a myriad of ways in which it can contribute to our understanding of developmental and evolutionary biology. This resource has many other potential applications, limited only by the investigator's imagination.


Assuntos
Biologia Computacional/métodos , Drosophila/embriologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Família Multigênica , Animais , Biologia Computacional/instrumentação , Bases de Dados Factuais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
12.
Cancer Res Commun ; 3(6): 952-968, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37377603

RESUMO

Oncolytic viruses exploited for cancer therapy have been developed to selectively infect, replicate, and kill cancer cells to inhibit tumor growth. However, in some cancer cells, oncolytic viruses are often limited in completing their full replication cycle, forming progeny virions, and/or spreading in the tumor bed because of the heterogeneous cell types within the tumor bed. Here, we report that the nuclear export pathway regulates oncolytic myxoma virus (MYXV) infection and cytoplasmic viral replication in a subclass of human cancer cell types where viral replication is restricted. Inhibition of the XPO-1 (exportin 1) nuclear export pathway with nuclear export inhibitors can overcome this restriction by trapping restriction factors in the nucleus and allow significantly enhanced viral replication and killing of cancer cells. Furthermore, knockdown of XPO-1 significantly enhanced MYXV replication in restrictive human cancer cells and reduced the formation of antiviral granules associated with RNA helicase DHX9. Both in vitro and in vivo, we demonstrated that the approved XPO1 inhibitor drug selinexor enhances the replication of MYXV and kills diverse human cancer cells. In a xenograft tumor model in NSG mice, combination therapy with selinexor plus MYXV significantly reduced the tumor burden and enhanced the survival of animals. In addition, we performed global-scale proteomic analysis of nuclear and cytosolic proteins in human cancer cells to identify the host and viral proteins that were upregulated or downregulated by different treatments. These results indicate, for the first time, that selinexor in combination with oncolytic MYXV can be used as a potential new therapy. Significance: We demonstrated that a combination of nuclear export inhibitor selinexor and oncolytic MYXV significantly enhanced viral replication, reduced cancer cell proliferation, reduced tumor burden, and enhanced the overall survival of animals. Thus, selinexor and oncolytic MYXV can be used as potential new anticancer therapy.


Assuntos
Myxoma virus , Neoplasias , Vírus Oncolíticos , Humanos , Animais , Camundongos , Myxoma virus/genética , Transporte Ativo do Núcleo Celular , Proteômica , Vírus Oncolíticos/genética
13.
bioRxiv ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37961404

RESUMO

The emergence of technologies that can support high-throughput profiling of single cell transcriptomes offers to revolutionize the study of brain tissue from persons with and without Alzheimer's disease (AD). Integration of these data with additional complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link observed cell subpopulations and molecular network features within a broader disease-relevant context. We report here single nucleus RNA sequencing (snRNA-seq) profiles generated from superior frontal gyrus cortical tissue samples from 101 exceptionally well characterized, aged subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in peripheral hematological lab parameters, with these observations replicated in an independent, prospective cohort study of ageing and dementia. We also observed an AD-associated CD83(+) microglial subtype with unique molecular networks that encompass many known regulators of AD-relevant microglial biology, and which are associated with immunoglobulin IgG4 production in the transverse colon. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal novel disease biology. The transcriptomic, genetic, phenotypic, and network data resources described within this study are available for access and utilization by the scientific community.

14.
EMBO Mol Med ; 15(9): e17376, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37534622

RESUMO

SARS-CoV-2 acute respiratory distress syndrome (ARDS) induces uncontrolled lung inflammation and coagulopathy with high mortality. Anti-viral drugs and monoclonal antibodies reduce early COVID-19 severity, but treatments for late-stage immuno-thrombotic syndromes and long COVID are limited. Serine protease inhibitors (SERPINS) regulate activated proteases. The myxoma virus-derived Serp-1 protein is a secreted immunomodulatory serpin that targets activated thrombotic, thrombolytic, and complement proteases as a self-defense strategy to combat clearance. Serp-1 is effective in multiple animal models of inflammatory lung disease and vasculitis. Here, we describe systemic treatment with purified PEGylated Serp-1 as a therapy for immuno-coagulopathic complications during ARDS. Treatment with PEGSerp-1 in two mouse-adapted SARS-CoV-2 models in C57Bl/6 and BALB/c mice reduced lung and heart inflammation, with improved outcomes. PEGSerp-1 significantly reduced M1 macrophages in the lung and heart by modifying urokinase-type plasminogen activator receptor (uPAR), thrombotic proteases, and complement membrane attack complex (MAC). Sequential changes in gene expression for uPAR and serpins (complement and plasminogen inhibitors) were observed. PEGSerp-1 is a highly effective immune-modulator with therapeutic potential for severe viral ARDS, immuno-coagulopathic responses, and Long COVID.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Serpinas , Camundongos , Animais , Humanos , Serpinas/uso terapêutico , Serpinas/metabolismo , Serpinas/farmacologia , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Peptídeo Hidrolases
15.
BMC Evol Biol ; 12: 169, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22950647

RESUMO

BACKGROUND: Several studies in Drosophila have shown excessive movement of retrogenes from the X chromosome to autosomes, and that these genes are frequently expressed in the testis. This phenomenon has led to several hypotheses invoking natural selection as the process driving male-biased genes to the autosomes. Metta and Schlötterer (BMC Evol Biol 2010, 10:114) analyzed a set of retrogenes where the parental gene has been subsequently lost. They assumed that this class of retrogenes replaced the ancestral functions of the parental gene, and reported that these retrogenes, although mostly originating from movement out of the X chromosome, showed female-biased or unbiased expression. These observations led the authors to suggest that selective forces (such as meiotic sex chromosome inactivation and sexual antagonism) were not responsible for the observed pattern of retrogene movement out of the X chromosome. RESULTS: We reanalyzed the dataset published by Metta and Schlötterer and found several issues that led us to a different conclusion. In particular, Metta and Schlötterer used a dataset combined with expression data in which significant sex-biased expression is not detectable. First, the authors used a segmental dataset where the genes selected for analysis were less testis-biased in expression than those that were excluded from the study. Second, sex-biased expression was defined by comparing male and female whole-body data and not the expression of these genes in gonadal tissues. This approach significantly reduces the probability of detecting sex-biased expressed genes, which explains why the vast majority of the genes analyzed (parental and retrogenes) were equally expressed in both males and females. Third, the female-biased expression observed by Metta and Schlötterer is mostly found for parental genes located on the X chromosome, which is known to be enriched with genes with female-biased expression. Fourth, using additional gonad expression data, we found that autosomal genes analyzed by Metta and Schlötterer are less up regulated in ovaries and have higher chance to be expressed in meiotic cells of spermatogenesis when compared to X-linked genes. CONCLUSIONS: The criteria used to select retrogenes and the sex-biased expression data based on whole adult flies generated a segmental dataset of female-biased and unbiased expressed genes that was unable to detect the higher propensity of autosomal retrogenes to be expressed in males. Thus, there is no support for the authors' view that the movement of new retrogenes, which originated from X-linked parental genes, was not driven by selection. Therefore, selection-based genetic models remain the most parsimonious explanations for the observed chromosomal distribution of retrogenes.


Assuntos
Cromossomos de Insetos/genética , Drosophila/genética , Duplicação Gênica , Genes de Insetos/genética , Animais , Drosophila/classificação , Feminino , Expressão Gênica , Genes Ligados ao Cromossomo X/genética , Masculino , Mutagênese Insercional , Ovário/metabolismo , Retroelementos/genética , Transcrição Reversa , Seleção Genética , Fatores Sexuais , Testículo/metabolismo , Cromossomo X/genética
16.
Proc Biol Sci ; 279(1738): 2636-44, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22378807

RESUMO

It is now well established that mature mammalian spermatozoa carry a population of mRNA molecules, at least some of which are transferred to the oocyte at fertilization, however, their function remains largely unclear. To shed light on the evolutionary conservation of this feature of sperm biology, we analysed highly purified populations of mature sperm from the fruitfly, Drosophila melanogaster. As with mammalian sperm, we found a consistently enriched population of mRNA molecules that are unlikely to be derived from contaminating somatic cells or immature sperm. Using tagged transcripts for three of the spermatozoal mRNAs, we demonstrate that they are transferred to the oocyte at fertilization and can be detected before, and at least until, the onset of zygotic gene expression. We find a remarkable conservation in the functional annotations associated with fly and human spermatozoal mRNAs, in particular, a highly significant enrichment for transcripts encoding ribosomal proteins (RPs). The substantial functional coherence of spermatozoal transcripts in humans and the fly opens the possibility of using the power of Drosophila genetics to address the function of this enigmatic class of molecules in sperm and in the oocyte following fertilization.


Assuntos
Drosophila melanogaster/genética , RNA Mensageiro/metabolismo , Espermatozoides/metabolismo , Transcriptoma , Animais , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Fertilização , Humanos , Masculino , RNA Mensageiro/química , RNA Mensageiro/genética , Espermatogênese
17.
Bioinformatics ; 27(23): 3319-20, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21994220

RESUMO

SUMMARY: Images containing spatial expression patterns illuminate the roles of different genes during embryogenesis. In order to generate initial clues to regulatory interactions, biologists frequently need to know the set of genes expressed at the same time at specific locations in a developing embryo, as well as related research publications. However, text-based mining of image annotations and research articles cannot produce all relevant results, because the primary data are images that exist as graphical objects. We have developed a unique knowledge base (FlyExpress) to facilitate visual mining of images from Drosophila melanogaster embryogenesis. By clicking on specific locations in pictures of fly embryos from different stages of development and different visual projections, users can produce a list of genes and publications instantly. In FlyExpress, each queryable embryo picture is a heat-map that captures the expression patterns of more than 4500 genes and more than 2600 published articles. In addition, one can view spatial patterns for particular genes over time as well as find other genes with similar expression patterns at a given developmental stage. Therefore, FlyExpress is a unique tool for mining spatiotemporal expression patterns in a format readily accessible to the scientific community. AVAILABILITY: http://www.flyexpress.net CONTACT: s.kumar@asu.edu.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Animais , Recursos Audiovisuais , Mineração de Dados , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Desenvolvimento Embrionário , Perfilação da Expressão Gênica
18.
PLoS Genet ; 5(11): e1000731, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19936020

RESUMO

In Drosophila, genes expressed in males tend to accumulate on autosomes and are underrepresented on the X chromosome. In particular, genes expressed in testis have been observed to frequently relocate from the X chromosome to the autosomes. The inactivation of X-linked genes during male meiosis (i.e., meiotic sex chromosome inactivation-MSCI) was first proposed to explain male sterility caused by X-autosomal translocation in Drosophila, and more recently it was suggested that MSCI might provide the conditions under which selection would favor the accumulation of testis-expressed genes on autosomes. In order to investigate the impact of MSCI on Drosophila testis-expressed genes, we performed a global gene expression analysis of the three major phases of D. melanogaster spermatogenesis: mitosis, meiosis, and post-meiosis. First, we found evidence supporting the existence of MSCI by comparing the expression levels of X- and autosome-linked genes, finding the former to be significantly reduced in meiosis. Second, we observed that the paucity of X-linked testis-expressed genes was restricted to those genes highly expressed in meiosis. Third, we found that autosomal genes relocated through retroposition from the X chromosome were more often highly expressed in meiosis in contrast to their X-linked parents. These results suggest MSCI as a general mechanism affecting the evolution of some testis-expressed genes.


Assuntos
Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Meiose/genética , Cromossomos Sexuais/genética , Espermatogênese/genética , Testículo/metabolismo , Inativação do Cromossomo X/genética , Animais , Drosophila melanogaster/citologia , Perfilação da Expressão Gênica , Genes de Insetos , Genes Ligados ao Cromossomo X , Genoma de Inseto/genética , Masculino , Mitose , Especificidade de Órgãos/genética , Testículo/citologia
19.
Front Plant Sci ; 13: 925008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119630

RESUMO

Monoclonal antibodies (mAbs) are important proteins used in many life science applications, from diagnostics to therapeutics. High demand for mAbs for different applications urges the development of rapid and reliable recombinant production platforms. Plants provide a quick and inexpensive system for producing recombinant mAbs. Moreover, when paired with an established platform for mAb discovery, plants can easily be tailored to produce mAbs of different isotypes against the same target. Here, we demonstrate that a hybridoma-generated mouse mAb against chitinase 1 (CTS1), an antigen from Coccidioides spp., can be biologically engineered for use with serologic diagnostic test kits for coccidioidomycosis (Valley Fever) using plant expression. The original mouse IgG was modified and recombinantly produced in glycoengineered Nicotiana benthamiana plants via transient expression as IgG and IgM isotypes with human kappa, gamma, and mu constant regions. The two mAb isotypes produced in plants were shown to maintain target antigen recognition to CTS1 using similar reagents as the Food and Drug Administration (FDA)-approved Valley Fever diagnostic kits. As none of the currently approved kits provide antibody dilution controls, humanization of antibodies that bind to CTS1, a major component of the diagnostic antigen preparation, may provide a solution to the lack of consistently reactive antibody controls for Valley Fever diagnosis. Furthermore, our work provides a foundation for reproducible and consistent production of recombinant mAbs engineered to have a specific isotype for use in diagnostic assays.

20.
Microbiol Spectr ; 10(1): e0167321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019702

RESUMO

Maternally transmitted obligatory endosymbionts are found in the female gonads as well as in somatic tissue and are expected to provide missing metabolite to their hosts. These deficiencies are presumably complemented through specific symbiotic microorganisms such as Coxiella-like endosymbionts (CLEs) of Rhipicephalus ticks. CLEs are localized in specialized host tissue cells within the Malpighian tubules (Mt) and the ovaries (Ov) from which they are maternally transmitted to developing oocytes. These two organs differ in function and cell types, but the role of CLEs in these tissues is unknown. To probe possible functions of CLEs, comparative proteomics was performed between Mt and Ov of R. sanguineus ticks. Altogether, a total of 580 and 614 CLE proteins were identified in Mt and Ov, respectively. Of these, 276 CLE proteins were more abundant in Mt, of which 12 were significantly differentially abundant. In Ov, 290 CLE proteins were more abundant, of which 16 were significantly differentially abundant. Gene Ontology analysis revealed that most of the proteins enriched in Mt are related to cellular metabolic functions and stress responses, whereas in Ov, the majority were related to cell proliferation suggesting CLEs function differentially and interdependently with host requirements specific to each organ. The results suggest Mt CLEs provide essential nutrients to its host and Ov CLEs promote proliferation and vertical transmission to tick progeny. IMPORTANCE Here we compare the Coxiella-like endosymbionts (CLEs) proteomes from Malpighian tubule (Mt) and the ovaries (Ov) of the brown dog tick Rhipicephalus sanguineus. Our results support the hypothesis that CLEs function interdependently with host requirements in each of the organs. The different functional specificity of CLE in the same host suggest that metabolic capabilities evolved according to the constrains imposed by the specific organ function and requirements. Our findings provide specific CLE protein targets that can be useful for future studies of CLE biology with a focus on tick population control.


Assuntos
Coxiella/metabolismo , Proteômica , Simbiose/fisiologia , Animais , Coxiella/genética , Cães , Feminino , Ontologia Genética , Túbulos de Malpighi , Ovário , Rhipicephalus , Rhipicephalus sanguineus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa