Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 161(3): 674-690, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25910214

RESUMO

Modulation of protein function is used to intervene in cellular processes but is often done indirectly by means of introducing DNA or mRNA encoding the effector protein. Thus far, direct intracellular delivery of proteins has remained challenging. We developed a method termed iTOP, for induced transduction by osmocytosis and propanebetaine, in which a combination of NaCl hypertonicity-induced macropinocytosis and a transduction compound (propanebetaine) induces the highly efficient transduction of proteins into a wide variety of primary cells. We demonstrate that iTOP is a useful tool in systems in which transient cell manipulation drives permanent cellular changes. As an example, we demonstrate that iTOP can mediate the delivery of recombinant Cas9 protein and short guide RNA, driving efficient gene targeting in a non-integrative manner.


Assuntos
Técnicas Citológicas , Proteínas , Células Cultivadas , Células-Tronco Embrionárias , Marcação de Genes , Humanos , RNA , Transdução Genética
2.
Mol Cell ; 82(11): 2021-2031.e5, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35447082

RESUMO

The androgen receptor (AR) is a nuclear receptor that governs gene expression programs required for prostate development and male phenotype maintenance. Advanced prostate cancers display AR hyperactivation and transcriptome expansion, in part, through AR amplification and interaction with oncoprotein cofactors. Despite its biological importance, how AR domains and cofactors cooperate to bind DNA has remained elusive. Using single-particle cryo-electron microscopy, we isolated three conformations of AR bound to DNA, showing that AR forms a non-obligate dimer, with the buried dimer interface utilized by ancestral steroid receptors repurposed to facilitate cooperative DNA binding. We identify novel allosteric surfaces which are compromised in androgen insensitivity syndrome and reinforced by AR's oncoprotein cofactor, ERG, and by DNA-binding motifs. Finally, we present evidence that this plastic dimer interface may have been adopted for transactivation at the expense of DNA binding. Our work highlights how fine-tuning AR's cooperative interactions translate to consequences in development and disease.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Microscopia Crioeletrônica , DNA/metabolismo , Dimerização , Humanos , Masculino , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Ativação Transcricional
3.
Cell ; 159(1): 163-175, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25201529

RESUMO

The prostate gland consists of basal and luminal cells arranged as pseudostratified epithelium. In tissue recombination models, only basal cells reconstitute a complete prostate gland, yet murine lineage-tracing experiments show that luminal cells generate basal cells. It has remained challenging to address the molecular details of these transitions and whether they apply to humans, due to the lack of culture conditions that recapitulate prostate gland architecture. Here, we describe a 3D culture system that supports long-term expansion of primary mouse and human prostate organoids, composed of fully differentiated CK5+ basal and CK8+ luminal cells. Organoids are genetically stable, reconstitute prostate glands in recombination assays, and can be experimentally manipulated. Single human luminal and basal cells give rise to organoids, yet luminal-cell-derived organoids more closely resemble prostate glands. These data support a luminal multilineage progenitor cell model for prostate tissue and establish a robust, scalable system for mechanistic studies.


Assuntos
Técnicas de Cultura de Órgãos , Organoides , Próstata/citologia , Androgênios/metabolismo , Humanos , Masculino , Células-Tronco/citologia , Células-Tronco/metabolismo
4.
Cell ; 159(1): 176-187, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25201530

RESUMO

The lack of in vitro prostate cancer models that recapitulate the diversity of human prostate cancer has hampered progress in understanding disease pathogenesis and therapy response. Using a 3D organoid system, we report success in long-term culture of prostate cancer from biopsy specimens and circulating tumor cells. The first seven fully characterized organoid lines recapitulate the molecular diversity of prostate cancer subtypes, including TMPRSS2-ERG fusion, SPOP mutation, SPINK1 overexpression, and CHD1 loss. Whole-exome sequencing shows a low mutational burden, consistent with genomics studies, but with mutations in FOXA1 and PIK3R1, as well as in DNA repair and chromatin modifier pathways that have been reported in advanced disease. Loss of p53 and RB tumor suppressor pathway function are the most common feature shared across the organoid lines. The methodology described here should enable the generation of a large repertoire of patient-derived prostate cancer lines amenable to genetic and pharmacologic studies.


Assuntos
Técnicas de Cultura , Organoides , Neoplasias da Próstata/patologia , Xenoenxertos , Humanos , Masculino , Metástase Neoplásica/patologia , Organoides/patologia , Farmacologia/métodos , Proteínas Supressoras de Tumor/metabolismo
5.
Cell ; 149(6): 1245-56, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682247

RESUMO

Degradation of cytosolic ß-catenin by the APC/Axin1 destruction complex represents the key regulated step of the Wnt pathway. It is incompletely understood how the Axin1 complex exerts its Wnt-regulated function. Here, we examine the mechanism of Wnt signaling under endogenous levels of the Axin1 complex. Our results demonstrate that ß-catenin is not only phosphorylated inside the Axin1 complex, but also ubiquinated and degraded via the proteasome, all within an intact Axin1 complex. In disagreement with current views, we find neither a disassembly of the complex nor an inhibition of phosphorylation of Axin1-bound ß-catenin upon Wnt signaling. Similar observations are made in primary intestinal epithelium and in colorectal cancer cell lines carrying activating Wnt pathway mutations. Wnt signaling suppresses ß-catenin ubiquitination normally occurring within the complex, leading to complex saturation by accumulated phospho-ß-catenin. Subsequently, newly synthesized ß-catenin can accumulate in a free cytosolic form and engage nuclear TCF transcription factors.


Assuntos
Proteína Axina/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Dados de Sequência Molecular , Mutação , Peptídeos/análise , Peptídeos/química , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , beta Catenina/genética
6.
Proc Natl Acad Sci U S A ; 121(28): e2322203121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968122

RESUMO

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)-a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single-cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to current and future antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.


Assuntos
Análise de Célula Única , Masculino , Humanos , Análise de Célula Única/métodos , Animais , Camundongos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Antígenos de Superfície/metabolismo , Antígenos de Superfície/genética , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Adenocarcinoma/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/metabolismo , Carcinoma Neuroendócrino/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico
8.
Nature ; 571(7765): 408-412, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31243370

RESUMO

Mutations in the transcription factor FOXA1 define a unique subset of prostate cancers but the functional consequences of these mutations and whether they confer gain or loss of function is unknown1-9. Here, by annotating the landscape of FOXA1 mutations from 3,086 human prostate cancers, we define two hotspots in the forkhead domain: Wing2 (around 50% of all mutations) and the highly conserved DNA-contact residue R219 (around 5% of all mutations). Wing2 mutations are detected in adenocarcinomas at all stages, whereas R219 mutations are enriched in metastatic tumours with neuroendocrine histology. Interrogation of the biological properties of wild-type FOXA1 and fourteen FOXA1 mutants reveals gain of function in mouse prostate organoid proliferation assays. Twelve of these mutants, as well as wild-type FOXA1, promoted an exaggerated pro-luminal differentiation program, whereas two different R219 mutants blocked luminal differentiation and activated a mesenchymal and neuroendocrine transcriptional program. Assay for transposase-accessible chromatin using sequencing (ATAC-seq) of wild-type FOXA1 and representative Wing2 and R219 mutants revealed marked, mutant-specific changes in open chromatin at thousands of genomic loci and exposed sites of FOXA1 binding and associated increases in gene expression. Of note, ATAC-seq peaks in cells expressing R219 mutants lacked the canonical core FOXA1-binding motifs (GTAAAC/T) but were enriched for a related, non-canonical motif (GTAAAG/A), which was preferentially activated by R219-mutant FOXA1 in reporter assays. Thus, FOXA1 mutations alter its pioneering function and perturb normal luminal epithelial differentiation programs, providing further support for the role of lineage plasticity in cancer progression.


Assuntos
Diferenciação Celular/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Mutação , Fenótipo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Linhagem da Célula , Cromatina/genética , Cromatina/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Motivos de Nucleotídeos , Organoides/citologia , Organoides/metabolismo
9.
Nature ; 546(7660): 671-675, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28614298

RESUMO

Half of all prostate cancers are caused by the TMPRSS2-ERG gene-fusion, which enables androgens to drive expression of the normally silent E26 transformation-specific (ETS) transcription factor ERG in prostate cells. Recent genomic landscape studies of such cancers have reported recurrent point mutations and focal deletions of another ETS member, the ETS2 repressor factor ERF. Here we show these ERF mutations cause decreased protein stability and mostly occur in tumours without ERG upregulation. ERF loss recapitulates the morphological and phenotypic features of ERG gain in normal mouse prostate cells, including expansion of the androgen receptor transcriptional repertoire, and ERF has tumour suppressor activity in the same genetic background of Pten loss that yields oncogenic activity by ERG. In the more common scenario of ERG upregulation, chromatin immunoprecipitation followed by sequencing indicates that ERG inhibits the ability of ERF to bind DNA at consensus ETS sites both in normal and in cancerous prostate cells. Consistent with a competition model, ERF overexpression blocks ERG-dependent tumour growth, and ERF loss rescues TMPRSS2-ERG-positive prostate cancer cells from ERG dependency. Collectively, these data provide evidence that the oncogenicity of ERG is mediated, in part, by competition with ERF and they raise the larger question of whether other gain-of-function oncogenic transcription factors might also inactivate endogenous tumour suppressors.


Assuntos
Carcinogênese/genética , Mutação , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/genética , Androgênios/metabolismo , Animais , Linhagem Celular Tumoral , Genes/genética , Humanos , Masculino , Camundongos , Próstata/metabolismo , Estabilidade Proteica , Receptores Androgênicos/metabolismo , Proteínas Repressoras/deficiência , Proteínas Repressoras/metabolismo , Serina Endopeptidases/deficiência , Serina Endopeptidases/metabolismo , Transdução de Sinais , Regulador Transcricional ERG/deficiência , Regulador Transcricional ERG/metabolismo , Transcriptoma/genética , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima
10.
Nature ; 513(7518): 422-425, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25043003

RESUMO

The somatic mutations present in the genome of a cell accumulate over the lifetime of a multicellular organism. These mutations can provide insights into the developmental lineage tree, the number of divisions that each cell has undergone and the mutational processes that have been operative. Here we describe whole genomes of clonal lines derived from multiple tissues of healthy mice. Using somatic base substitutions, we reconstructed the early cell divisions of each animal, demonstrating the contributions of embryonic cells to adult tissues. Differences were observed between tissues in the numbers and types of mutations accumulated by each cell, which likely reflect differences in the number of cell divisions they have undergone and varying contributions of different mutational processes. If somatic mutation rates are similar to those in mice, the results indicate that precise insights into development and mutagenesis of normal human cells will be possible.


Assuntos
Linhagem da Célula/genética , Células Clonais/citologia , Células Clonais/metabolismo , Genoma/genética , Mutagênese/genética , Mutação/genética , Animais , Relógios Biológicos/genética , Divisão Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Taxa de Mutação , Organoides/citologia , Organoides/metabolismo , Filogenia , Análise de Sequência de DNA , Cauda/citologia
11.
Proc Natl Acad Sci U S A ; 113(37): E5399-407, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27573849

RESUMO

Leucine-rich repeat-containing G-protein coupled receptor 5-positive (Lgr5(+)) stem cells reside at crypt bottoms of the small and large intestine. Small intestinal Paneth cells supply Wnt3, EGF, and Notch signals to neighboring Lgr5(+) stem cells. Whereas the colon lacks Paneth cells, deep crypt secretory (DCS) cells are intermingled with Lgr5(+) stem cells at crypt bottoms. Here, we report regenerating islet-derived family member 4 (Reg4) as a marker of DCS cells. To investigate a niche function, we eliminated DCS cells by using the diphtheria-toxin receptor gene knocked into the murine Reg4 locus. Ablation of DCS cells results in loss of stem cells from colonic crypts and disrupts gut homeostasis and colon organoid growth. In agreement, sorted Reg4(+) DCS cells promote organoid formation of single Lgr5(+) colon stem cells. DCS cells can be massively produced from Lgr5(+) colon stem cells in vitro by combined Notch inhibition and Wnt activation. We conclude that Reg4(+) DCS cells serve as Paneth cell equivalents in the colon crypt niche.


Assuntos
Neoplasias do Colo/metabolismo , Proteínas de Neoplasias/genética , Receptores Acoplados a Proteínas G/genética , Células-Tronco/metabolismo , Animais , Colo/citologia , Colo/crescimento & desenvolvimento , Colo/metabolismo , Neoplasias do Colo/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Camundongos , Proteínas de Neoplasias/metabolismo , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Proteínas Associadas a Pancreatite , Celulas de Paneth/citologia , Celulas de Paneth/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Notch/genética , Nicho de Células-Tronco/genética , Células-Tronco/citologia , Via de Sinalização Wnt/genética
12.
Nat Methods ; 9(1): 81-3, 2011 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-22138822

RESUMO

The study of gene function in endodermal epithelia such as of stomach, small intestine and colon relies heavily on transgenic approaches. Establishing such animal models is laborious, expensive and time-consuming. We present here a method based on Cre recombinase-inducible retrovirus vectors that allows the conditional manipulation of gene expression in primary mouse organoid culture systems.


Assuntos
Mucosa Intestinal/citologia , Organoides/citologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Expressão Gênica , Técnicas de Silenciamento de Genes/métodos , Proteínas de Fluorescência Verde/genética , Humanos , Integrases/metabolismo , Camundongos , Organoides/metabolismo , Receptores Notch/fisiologia , Retroviridae/genética , Células-Tronco/virologia , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Transdução Genética/métodos
13.
bioRxiv ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38645223

RESUMO

Lineage plasticity is a recognized hallmark of cancer progression that can shape therapy outcomes. The underlying cellular and molecular mechanisms mediating lineage plasticity remain poorly understood. Here, we describe a versatile in vivo platform to identify and interrogate the molecular determinants of neuroendocrine lineage transformation at different stages of prostate cancer progression. Adenocarcinomas reliably develop following orthotopic transplantation of primary mouse prostate organoids acutely engineered with human-relevant driver alterations (e.g., Rb1-/-; Trp53-/-; cMyc+ or Pten-/-; Trp53-/-; cMyc+), but only those with Rb1 deletion progress to ASCL1+ neuroendocrine prostate cancer (NEPC), a highly aggressive, androgen receptor signaling inhibitor (ARSI)-resistant tumor. Importantly, we show this lineage transition requires a native in vivo microenvironment not replicated by conventional organoid culture. By integrating multiplexed immunofluorescence, spatial transcriptomics and PrismSpot to identify cell type-specific spatial gene modules, we reveal that ASCL1+ cells arise from KRT8+ luminal epithelial cells that progressively acquire transcriptional heterogeneity, producing large ASCL1+;KRT8- NEPC clusters. Ascl1 loss in established NEPC results in transient tumor regression followed by recurrence; however, Ascl1 deletion prior to transplantation completely abrogates lineage plasticity, yielding adenocarcinomas with elevated AR expression and marked sensitivity to castration. The dynamic feature of this model reveals the importance of timing of therapies focused on lineage plasticity and offers a platform for identification of additional lineage plasticity drivers.

14.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38645034

RESUMO

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)--a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis (TMA) on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated, but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer (SCLC) subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to novel antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.

15.
Signal Transduct Target Ther ; 9(1): 189, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39054323

RESUMO

Neuroendocrine (NE) transformation is a mechanism of resistance to targeted therapy in lung and prostate adenocarcinomas leading to poor prognosis. Up to date, even if patients at high risk of transformation can be identified by the occurrence of Tumor Protein P53 (TP53) and Retinoblastoma Transcriptional Corepressor 1 (RB1) mutations in their tumors, no therapeutic strategies are available to prevent or delay histological transformation. Upregulation of the cell cycle kinase Cell Division Cycle 7 (CDC7) occurred in tumors during the initial steps of NE transformation, already after TP53/RB1 co-inactivation, leading to induced sensitivity to the CDC7 inhibitor simurosertib. CDC7 inhibition suppressed NE transdifferentiation and extended response to targeted therapy in in vivo models of NE transformation by inducing the proteasome-mediated degradation of the MYC Proto-Oncogen (MYC), implicated in stemness and histological transformation. Ectopic overexpression of a degradation-resistant MYC isoform reestablished the NE transformation phenotype observed on targeted therapy, even in the presence of simurosertib. CDC7 inhibition also markedly extended response to standard cytotoxics (cisplatin, irinotecan) in lung and prostate small cell carcinoma models. These results nominate CDC7 inhibition as a therapeutic strategy to constrain lineage plasticity, as well as to effectively treat NE tumors de novo or after transformation. As simurosertib clinical efficacy trials are ongoing, this concept could be readily translated for patients at risk of transformation.


Assuntos
Proteínas de Ciclo Celular , Neoplasias Pulmonares , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-myc , Humanos , Masculino , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Camundongos , Animais , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/tratamento farmacológico , Proteólise/efeitos dos fármacos , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Ubiquitina-Proteína Ligases
16.
Artigo em Inglês | MEDLINE | ID: mdl-37734867

RESUMO

In the last decade, organoid technology has become a cornerstone in cancer research. Organoids are long-term primary cell cultures, usually of epithelial origin, grown in a three-dimensional (3D) protein matrix and a fully defined medium. Organoids can be derived from many organs and cancer types and sites, encompassing both murine and human tissues. Importantly, they can be established from various stages during tumor evolution and recapitulate with high accuracy patient genomics and phenotypes in vitro, offering a platform for personalized medicine. Additionally, organoids are remarkably amendable for experimental manipulation. Taken together, these features make organoids a powerful tool with applications in basic cancer research and personalized medicine. Here, we will discuss the origins of organoid culture, applications in cancer research, and how cancer organoids can synergize with other models of cancer to drive basic discoveries as well as to translate these toward clinical solutions.

17.
Sci Transl Med ; 15(707): eadf7006, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531417

RESUMO

In lung and prostate adenocarcinomas, neuroendocrine (NE) transformation to an aggressive derivative resembling small cell lung cancer (SCLC) is associated with poor prognosis. We previously described dependency of SCLC on the nuclear transporter exportin 1. Here, we explored the role of exportin 1 in NE transformation. We observed up-regulated exportin 1 in lung and prostate pretransformation adenocarcinomas. Exportin 1 was up-regulated after genetic inactivation of TP53 and RB1 in lung and prostate adenocarcinoma cell lines, accompanied by increased sensitivity to the exportin 1 inhibitor selinexor in vitro. Exportin 1 inhibition prevented NE transformation in different TP53/RB1-inactivated prostate adenocarcinoma xenograft models that acquire NE features upon treatment with the aromatase inhibitor enzalutamide and extended response to the EGFR inhibitor osimertinib in a lung cancer transformation patient-derived xenograft (PDX) model exhibiting combined adenocarcinoma/SCLC histology. Ectopic SOX2 expression restored the enzalutamide-promoted NE phenotype on adenocarcinoma-to-NE transformation xenograft models despite selinexor treatment. Selinexor sensitized NE-transformed lung and prostate small cell carcinoma PDXs to standard cytotoxics. Together, these data nominate exportin 1 inhibition as a potential therapeutic target to constrain lineage plasticity and prevent or treat NE transformation in lung and prostate adenocarcinoma.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , Neoplasias da Próstata , Fatores de Transcrição SOXB1 , Carcinoma de Pequenas Células do Pulmão , Humanos , Masculino , Adenocarcinoma/patologia , Regulação para Baixo , Neoplasias Pulmonares/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Carcinoma de Pequenas Células do Pulmão/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Animais , Proteína Exportina 1
18.
Cancer Gene Ther ; 29(6): 793-802, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34135475

RESUMO

Treatment of castration-resistant prostate cancer remains a challenging clinical problem. Despite the promising effects of immunotherapy in other solid cancers, prostate cancer has remained largely unresponsive. Oncolytic viruses represent a promising therapeutic avenue, as oncolytic virus treatment combines tumour cell lysis with activation of the immune system and mounting of effective anti-tumour responses. Mammalian Orthoreoviruses are non-pathogenic human viruses with a preference of lytic replication in human tumour cells. In this study, we evaluated the oncolytic efficacy of the bioselected oncolytic reovirus mutant jin-3 in multiple human prostate cancer models. The jin-3 reovirus displayed efficient infection, replication, and anti-cancer responses in 2D and 3D prostate cancer models, as well as in ex vivo cultured human tumour slices. In addition, the jin-3 reovirus markedly reduced the viability and growth of human cancer cell lines and patient-derived xenografts. The infection induced the expression of mediators of immunogenic cell death, interferon-stimulated genes, and inflammatory cytokines. Taken together, our data demonstrate that the reovirus mutant jin-3 displays tumour tropism, and induces potent oncolytic and immunomodulatory responses in human prostate cancer models. Therefore, jin-3 reovirus represents an attractive candidate for further development as oncolytic agent for treatment of patients with aggressive localised or advanced prostate cancer.


Assuntos
Orthoreovirus Mamífero 3 , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias da Próstata , Reoviridae , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Mamíferos , Vírus Oncolíticos/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Reoviridae/genética
19.
Science ; 377(6611): 1180-1191, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35981096

RESUMO

Drug resistance in cancer is often linked to changes in tumor cell state or lineage, but the molecular mechanisms driving this plasticity remain unclear. Using murine organoid and genetically engineered mouse models, we investigated the causes of lineage plasticity in prostate cancer and its relationship to antiandrogen resistance. We found that plasticity initiates in an epithelial population defined by mixed luminal-basal phenotype and that it depends on increased Janus kinase (JAK) and fibroblast growth factor receptor (FGFR) activity. Organoid cultures from patients with castration-resistant disease harboring mixed-lineage cells reproduce the dependency observed in mice by up-regulating luminal gene expression upon JAK and FGFR inhibitor treatment. Single-cell analysis confirms the presence of mixed-lineage cells with increased JAK/STAT (signal transducer and activator of transcription) and FGFR signaling in a subset of patients with metastatic disease, with implications for stratifying patients for clinical trials.


Assuntos
Plasticidade Celular , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Janus Quinases , Neoplasias da Próstata , Fatores de Transcrição STAT , Antagonistas de Androgênios , Animais , Humanos , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases/genética , Janus Quinases/metabolismo , Masculino , Camundongos , Neoplasias Experimentais , Organoides , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
20.
Science ; 368(6490): 497-505, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32355025

RESUMO

Androgen deprivation is the cornerstone of prostate cancer treatment. It results in involution of the normal gland to ~90% of its original size because of the loss of luminal cells. The prostate regenerates when androgen is restored, a process postulated to involve stem cells. Using single-cell RNA sequencing, we identified a rare luminal population in the mouse prostate that expresses stemlike genes (Sca1 + and Psca +) and a large population of differentiated cells (Nkx3.1 +, Pbsn +). In organoids and in mice, both populations contribute equally to prostate regeneration, partly through androgen-driven expression of growth factors (Nrg2, Rspo3) by mesenchymal cells acting in a paracrine fashion on luminal cells. Analysis of human prostate tissue revealed similar differentiated and stemlike luminal subpopulations that likewise acquire enhanced regenerative potential after androgen ablation. We propose that prostate regeneration is driven by nearly all persisting luminal cells, not just by rare stem cells.


Assuntos
Androgênios/metabolismo , Próstata/fisiologia , Próstata/cirurgia , Neoplasias da Próstata/cirurgia , Regeneração , Antagonistas de Androgênios/uso terapêutico , Proteína de Ligação a Androgênios/genética , Animais , Antígenos de Neoplasias/genética , Ataxina-1/genética , Diferenciação Celular/genética , Proteínas Ligadas por GPI/genética , Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Masculino , Células-Tronco Mesenquimais/fisiologia , Camundongos , Proteínas de Neoplasias/genética , Fatores de Crescimento Neural/genética , Tamanho do Órgão , Organoides/metabolismo , Organoides/fisiologia , Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Regeneração/genética , Análise de Sequência de RNA , Análise de Célula Única , Trombospondinas/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa