Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Handb Exp Pharmacol ; 229: 3-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26091634

RESUMO

Professor Gerhard Zbinden recognized in the 1970s that the standards of the day for testing new candidate drugs in preclinical toxicity studies failed to identify acute pharmacodynamic adverse events that had the potential to harm participants in clinical trials. From his vision emerged the field of safety pharmacology, formally defined in the International Conference on Harmonization (ICH) S7A guidelines as "those studies that investigate the potential undesirable pharmacodynamic effects of a substance on physiological functions in relation to exposure in the therapeutic range and above." Initially, evaluations of small-molecule pharmacodynamic safety utilized efficacy models and were an ancillary responsibility of discovery scientists. However, over time, the relationship of these studies to overall safety was reflected by the regulatory agencies who, in directing the practice of safety pharmacology through guidance documents, prompted transition of responsibility to drug safety departments (e.g., toxicology). Events that have further shaped the field over the past 15 years include the ICH S7B guidance, evolution of molecular technologies leading to identification of new therapeutic targets with uncertain toxicities, introduction of data collection using more sophisticated and refined technologies, and utilization of transgenic animal models probing critical scientific questions regarding novel targets of toxicity. The collapse of the worldwide economy in the latter half of the first decade of the twenty-first century, continuing high rates of compound attrition during clinical development and post-approval and sharply increasing costs of drug development have led to significant strategy changes, contraction of the size of pharmaceutical organizations, and refocusing of therapeutic areas of investigation. With these changes has come movement away from dedicated internal safety pharmacology capability to utilization of capabilities within external contract research organizations. This movement has created the opportunity for the safety pharmacology discipline to come "full circle" and return to the drug discovery arena (target identification through clinical candidate selection) to contribute to the mitigation of the high rate of candidate drug failure through better compound selection decision making. Finally, the changing focus of science and losses in didactic training of scientists in whole animal physiology and pharmacology have revealed a serious gap in the future availability of qualified individuals to apply the principles of safety pharmacology in support of drug discovery and development. This is a significant deficiency that at present is only partially met with academic and professional society programs advancing a minimal level of training. In summary, with the exception that the future availability of suitably trained scientists is a critical need for the field that remains to be effectively addressed, the prospects for the future of safety pharmacology are hopeful and promising, and challenging for those individuals who want to assume this responsibility. What began in the early part of the new millennium as a relatively simple model of testing to assure the safety of Phase I clinical subjects and patients from acute deleterious effects on life-supporting organ systems has grown with experience and time to a science that mobilizes the principles of cellular and molecular biology and attempts to predict acute adverse events and those associated with long-term treatment. These challenges call for scientists with a broad range of in-depth scientific knowledge and an ability to adapt to a dynamic and forever changing industry. Identifying individuals who will serve today and training those who will serve in the future will fall to all of us who are committed to this important field of science.


Assuntos
Avaliação Pré-Clínica de Medicamentos/tendências , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Coleta de Dados , Humanos , Segurança
2.
J Pharmacol Toxicol Methods ; 84: 111-127, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27956204

RESUMO

INTRODUCTION: Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are anticipated to be a useful tool for conducting proarrhythmia risk assessments of drug candidates. However, a torsadogenic risk prediction paradigm using hiPSC-CMs has not yet been fully established. METHODS: Extracellular field potentials (FPs) were recorded from hiPSC-CMs using the multi-electrode array (MEA) system. The effects on FPs were evaluated with 60 drugs, including 57 with various clinical torsadogenic risks. Actual drug concentrations in medium were measured using the equilibrium dialysis method with a Rapid Equilibrium Dialysis device. Relative torsade de pointes (TdP) scores were determined for each drug according to the degree of FP duration prolongation and early afterdepolarization occurrence. The margins were calculated from the free concentration in medium and free effective therapeutic plasma concentration. Each drug's results were plotted on a two-dimensional map of relative TdP risk scores versus margins. RESULTS: Each drug was categorised as high, intermediate, or low risk based on its location within predefined areas of the two-dimensional map. We categorised 19 drugs as high risk; 18 as intermediate risk; and 17 as low risk. We examined the concordance between our categorisation of high and low risk drugs against the torsadogenic risk categorisation in CredibleMeds®. Our system demonstrated high concordance, as reflected in a sensitivity of 81%, specificity of 87%, and accuracy of 83%. DISCUSSION: These results indicate that our torsadogenic risk assessment is reliable and has a potential to replace the hERG assay for torsadogenic risk prediction, however, this system needs to be improved for the accurate of prediction of clinical TdP risk. Here, we propose a novel drug induced torsadogenic risk categorising system using hiPSC-CMs and the MEA system.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Cardiotoxinas/toxicidade , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Torsades de Pointes/induzido quimicamente , Potenciais de Ação/fisiologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Medição de Risco , Torsades de Pointes/patologia , Torsades de Pointes/fisiopatologia
3.
PLoS One ; 11(12): e0167348, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27923051

RESUMO

The aims of this study were to (1) characterize basic electrophysiological elements of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) that correspond to clinical properties such as QT-RR relationship, (2) determine the applicability of QT correction and analysis methods, and (3) determine if and how these in-vitro parameters could be used in risk assessment for adverse drug-induced effects such as Torsades de pointes (TdP). Field potential recordings were obtained from commercially available hiPSC-CMs using multi-electrode array (MEA) platform with and without ion channel antagonists in the recording solution. Under control conditions, MEA-measured interspike interval and field potential duration (FPD) ranged widely from 1049 to 1635 ms and from 334 to 527 ms, respectively and provided positive linear regression coefficients similar to native QT-RR plots obtained from human electrocardiogram (ECG) analyses in the ongoing cardiovascular-based Framingham Heart Study. Similar to minimizing the effect of heart rate on the QT interval, Fridericia's and Bazett's corrections reduced the influence of beat rate on hiPSC-CM FPD. In the presence of E-4031 and cisapride, inhibitors of the rapid delayed rectifier potassium current, hiPSC-CMs showed reverse use-dependent FPD prolongation. Categorical analysis, which is usually applied to clinical QT studies, was applicable to hiPSC-CMs for evaluating torsadogenic risks with FPD and/or corrected FPD. Together, this results of this study links hiPSC-CM electrophysiological endpoints to native ECG endpoints, demonstrates the appropriateness of clinical analytical practices as applied to hiPSC-CMs, and suggests that hiPSC-CMs are a reliable models for assessing the arrhythmogenic potential of drug candidates in human.


Assuntos
Cromanos/farmacologia , Cisaprida/farmacologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/citologia , Piperidinas/farmacologia , Piridinas/farmacologia , Sulfonamidas/farmacologia , Células Cultivadas , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Modelos Lineares , Modelos Cardiovasculares , Torsades de Pointes/induzido quimicamente , Torsades de Pointes/fisiopatologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-25910965

RESUMO

INTRODUCTION: Multi-electrode array (MEA) systems and human induced pluripotent stem (iPS) cell-derived cardiomyocytes are frequently used to characterize the electrophysiological effects of drug candidates for the prediction of QT prolongation and proarrhythmic potential. However, the optimal experimental conditions for obtaining reliable experimental data, such as high-pass filter (HPF) frequency and cell plating density, remain to be determined. METHODS: Extracellular field potentials (FPs) were recorded from iPS cell-derived cardiomyocyte sheets by using the MED64 and MEA2100 multi-electrode array systems. Effects of HPF frequency (0.1 or 1Hz) on FP duration (FPD) were assessed in the presence and absence of moxifloxacin, terfenadine, and aspirin. The influence of cell density on FP characteristics recorded through a 0.1-Hz HPF was examined. The relationship between FP and action potential (AP) was elucidated by simultaneous recording of FP and AP using a membrane potential dye. RESULTS: Many of the FP waveforms recorded through a 1-Hz HPF were markedly deformed and appeared differentiated compared with those recorded through a 0.1-Hz HPF. The concentration-response curves for FPD in the presence of terfenadine reached a steady state at concentrations of 0.1 and 0.3µM when a 0.1-Hz HPF was used. In contrast, FPD decreased at a concentration of 0.3µM with a characteristic bell-shaped concentration-response curve when a 1-Hz HPF was used. The amplitude of the first and second peaks in the FP waveform increased with increasing cell plating density. The second peak of the FP waveform roughly coincided with AP signal at 50% repolarization, and the negative deflection at the second peak of the FP waveform in the presence of E-4031 corresponded to early afterdepolarization and triggered activity. DISCUSSION: FP can be used to assess the QT prolongation and proarrhythmic potential of drug candidates; however, experimental conditions such as HPF frequency are important for obtaining reliable data.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Células-Tronco Pluripotentes Induzidas/citologia , Síndrome do QT Longo/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/diagnóstico , Aspirina/administração & dosagem , Aspirina/toxicidade , Relação Dose-Resposta a Droga , Fluoroquinolonas/administração & dosagem , Fluoroquinolonas/toxicidade , Humanos , Síndrome do QT Longo/diagnóstico , Moxifloxacina , Piperidinas/administração & dosagem , Piperidinas/toxicidade , Piridinas/administração & dosagem , Piridinas/toxicidade , Terfenadina/administração & dosagem , Terfenadina/toxicidade
5.
J Pharmacol Sci ; 99(5): 531-41, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16493193

RESUMO

Drug concentrations that would prolong repolarization parameters by 10%, including action potential duration (APD90, APD30-90), in in vitro assays using guinea-pig papillary muscle and QTc intervals in in vivo assays using conscious dogs, conscious monkeys, and anesthetized dogs were compared. Although, both the in vitro and in vivo assays showed concentration-dependent responses for compounds that have been classified as torsadogenic in humans, only a weak correlation in EC10 values was observed between the in vitro and in vivo assays. Among the in vivo QT assays, the EC10 values obtained from conscious dogs, conscious monkeys, and anesthetized dogs correlated well with each other, but the EC10 values in monkeys were somewhat lower in comparison to those in dogs. When in vivo QT assay EC10 values were compared to the respective human effective therapeutic plasma concentration (ETPC), the ratios of EC10 values to ETPCs were less than 20 for most torsadogenic compounds. In conclusion, the relationships between the extent of QTc interval prolongation and the concentration of drugs was highly consistent among the three in vivo models, suggesting that the ratios of EC10 values in in vivo QT assays are useful for estimating the safety margin of drugs that prolong the QTc interval.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Síndrome do QT Longo/induzido quimicamente , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/induzido quimicamente , Bases de Dados Factuais , Cães , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Eletrocardiografia , Cobaias , Humanos , Técnicas In Vitro , Macaca fascicularis , Masculino , Modelos Animais , Músculos Papilares/efeitos dos fármacos , Músculos Papilares/fisiologia , Reprodutibilidade dos Testes , Telemetria
6.
J Pharmacol Sci ; 99(5): 423-37, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16493184

RESUMO

To construct a non-clinical database for drug-induced QT interval prolongation, the electrophysiological effects of 11 positive and 10 negative compounds on action potentials (AP) in guinea-pig papillary muscles were investigated in a multi-site study according to a standard protocol. Compounds with a selective inhibitory effect on the rapidly activated delayed rectifier potassium current (IKr) prolonged action potential duration at 90% repolarization (APD90) in a concentration-dependent manner, those showing Ca2+ current (ICa) inhibition shortened APD30, and those showing Na+ current (INa) inhibition decreased action potential amplitude (APA) and Vmax. Some of the mixed ion-channel blockers showed a bell-shaped concentration-response curve for APD90, probably due to their blockade of INa and/or ICa, sometimes leading to a false-negative result in the assay. In contrast, all positive compounds except for terfenadine and all negative compounds with IKr-blocking activity prolonged APD30-90 regardless of their INa- and/or ICa-blocking activities, suggesting that APD30-90 is a useful parameter for evaluating the IKr-blocking activity of test compounds. Furthermore, the assay is highly informative regarding the modulation of cardiac ion channels by test compounds. Therefore, when APD90 and APD30-90 are both measured, the action potential assay can be considered a useful method for assessing the risk of QT interval prolongation in humans in non-clinical safety pharmacology studies.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Bioensaio , Síndrome do QT Longo/induzido quimicamente , Músculos Papilares/efeitos dos fármacos , Animais , Bases de Dados Factuais , Cobaias , Técnicas In Vitro , Masculino , Músculos Papilares/fisiologia , Preparações Farmacêuticas
7.
J Pharmacol Sci ; 99(5): 449-57, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16493186

RESUMO

Certain compounds that prolong QT interval in humans have little or no effect on action-potential (AP) duration used traditionally, but they inhibit rapidly-activated-delayed-rectifier potassium currents (IKr) and/or human ether-a-go-go-related gene (hERG) currents. In this study using isolated guinea-pig papillary muscles, we investigated whether new parameters in AP assays can detect the inhibitory effects of various compounds on IKr and/or hERG currents with high sensitivity. The difference in AP duration between 60% and 30% repolarization, 90% and 60% repolarization, and 90% and 30% repolarization (APD30-60, APD60-90, and APD30-90, respectively) were calculated as the new parameters. All the 15 IKr and/or hERG current inhibitors that have been reported (9 compounds) or not reported (6 compounds) to inhibit calcium currents prolonged APD30-60, APD60-90, and/or APD30-90; and 8 of the 15 inhibitors prolonged APD30-60, APD60-90, and/or APD30-90 more potently than APD90. The APD30-60, APD60-90, and APD30-90 measurements revealed no difference in sensitivity when evaluating the effects of the IKr and/or hERG current inhibitors on the three parameters. On the other hand, compounds with little or no effect on hERG currents had no effect on APD30-60, APD60-90, or APD30-90. Therefore, it is concluded that in AP assays using isolated guinea-pig papillary muscles, APD30-60, APD60-90, and APD30-90 are useful indexes for evaluating the inhibitory effects of compounds including mixed ion-channel blockers on IKr and/or hERG currents.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Síndrome do QT Longo/induzido quimicamente , Músculos Papilares/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Bases de Dados Factuais , Canais de Potássio de Retificação Tardia/antagonistas & inibidores , Canais de Potássio de Retificação Tardia/fisiologia , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/fisiologia , Cobaias , Técnicas In Vitro , Masculino , Músculos Papilares/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa