Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(3): 3864-3874, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35040309

RESUMO

High-touch surfaces are known to be a major route for the spread of pathogens in healthcare and public settings. Antimicrobial coatings have, therefore, garnered significant attention to help mitigate the transmission of infectious diseases via the surface route. Among antimicrobial coatings, pathogen-repellent surfaces provide unique advantages in terms of safety in public settings such as instant repellency, affordability, biocompatibility, and long-term stability. While there have been many advances in the fabrication of biorepellent surfaces in the past two decades, this area of research continues to suffer challenges in scalability, cost, compatibility with high-touch applications, and performance for pathogen repellency. These features are critical for high-touch surfaces to be used in public settings. Additionally, the environmental impact of manufacturing repellent surfaces remains a challenge, mainly due to the use of fluorinated coatings. Here, we present a flexible hierarchical coating with straightforward and cost-effective manufacturing without the use of fluorine or a lubricant. Hierarchical surfaces were prepared through the growth of polysiloxane nanostructures using n-propyltrichlorosilane (n-PTCS) on activated polyolefin (PO), followed by heat shrinking to induce microscale wrinkles. The developed coatings demonstrated repellency, with contact angles over 153° and sliding angles <1°. In assays mimicking touch, these hierarchical surfaces demonstrated a 97.5% reduction in transmission of Escherichia coli (E.coli), demonstrating their potential as antimicrobial coatings to mitigate the spread of infectious diseases. Additionally, the developed surfaces displayed a 93% reduction in blood staining after incubation with human whole blood, confirming repellent properties that reduce bacterial deposition.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Siloxanas/farmacologia , Antibacterianos/química , Materiais Biocompatíveis/química , Teste de Materiais , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Siloxanas/química , Propriedades de Superfície
2.
ACS Biomater Sci Eng ; 7(2): 541-552, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33470781

RESUMO

Like all biofluid-contacting medical devices, intranasal splints are highly prone to bacterial adhesion and clot formation. Despite their widespread use and the numerous complications associated with infected splints, limited success has been achieved in advancing their safety and surface biocompatibility, and, to date, no surface-coating strategy has been proposed to simultaneously enhance the antithrombogenicity and bacterial repellency of intranasal splints. Herein, we report an efficient, highly stable lubricant-infused coating for intranasal splints to render their surfaces antithrombogenic and repellent toward bacterial cells. Lubricant-infused intranasal splints were prepared by creating superhydrophobic polysiloxane nanofilament (PSnF) coatings using surface-initiated polymerization of n-propyltrichlorosilane (n-PTCS) and further infiltrating them with a silicone oil lubricant. Compared with commercially available intranasal splints, lubricant-infused, PSnF-coated splints significantly attenuated plasma and blood clot formation and prevented bacterial adhesion and biofilm formation for up to 7 days, the typical duration for which intranasal splints are kept. We further demonstrated that the performance of our engineered biointerface is independent of the underlying substrate and could be used to enhance the hemocompatibility and repellency properties of other medical implants such as medical-grade catheters.


Assuntos
Aderência Bacteriana , Trombose , Humanos , Óleos de Silicone , Siloxanas , Contenções
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa