Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Immunol ; 18(7): 813-823, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28530713

RESUMO

The transcriptional programs that guide lymphocyte differentiation depend on the precise expression and timing of transcription factors (TFs). The TF BACH2 is essential for T and B lymphocytes and is associated with an archetypal super-enhancer (SE). Single-nucleotide variants in the BACH2 locus are associated with several autoimmune diseases, but BACH2 mutations that cause Mendelian monogenic primary immunodeficiency have not previously been identified. Here we describe a syndrome of BACH2-related immunodeficiency and autoimmunity (BRIDA) that results from BACH2 haploinsufficiency. Affected subjects had lymphocyte-maturation defects that caused immunoglobulin deficiency and intestinal inflammation. The mutations disrupted protein stability by interfering with homodimerization or by causing aggregation. We observed analogous lymphocyte defects in Bach2-heterozygous mice. More generally, we observed that genes that cause monogenic haploinsufficient diseases were substantially enriched for TFs and SE architecture. These findings reveal a previously unrecognized feature of SE architecture in Mendelian diseases of immunity: heterozygous mutations in SE-regulated genes identified by whole-exome/genome sequencing may have greater significance than previously recognized.


Assuntos
Doenças Autoimunes/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Síndromes de Imunodeficiência/genética , Corticosteroides/uso terapêutico , Adulto , Doenças Autoimunes/complicações , Colite/complicações , Colite/genética , Colite/patologia , Feminino , Febre/complicações , Febre/tratamento farmacológico , Febre/genética , Haploinsuficiência , Heterozigoto , Humanos , Síndromes de Imunodeficiência/complicações , Linfopenia/complicações , Linfopenia/genética , Masculino , Pessoa de Meia-Idade , Mutação , Pancitopenia/complicações , Pancitopenia/tratamento farmacológico , Pancitopenia/genética , Linhagem , Polimorfismo de Nucleotídeo Único , Recidiva , Infecções Respiratórias/complicações , Infecções Respiratórias/diagnóstico por imagem , Infecções Respiratórias/genética , Esplenomegalia/complicações , Esplenomegalia/genética , Síndrome , Tomografia Computadorizada por Raios X , Adulto Jovem
2.
Am J Hum Genet ; 110(2): 240-250, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36669496

RESUMO

Spinal muscular atrophy, a leading cause of early infant death, is caused by bi-allelic mutations of SMN1. Sequence analysis of SMN1 is challenging due to high sequence similarity with its paralog SMN2. Both genes have variable copy numbers across populations. Furthermore, without pedigree information, it is currently not possible to identify silent carriers (2+0) with two copies of SMN1 on one chromosome and zero copies on the other. We developed Paraphase, an informatics method that identifies full-length SMN1 and SMN2 haplotypes, determines the gene copy numbers, and calls phased variants using long-read PacBio HiFi data. The SMN1 and SMN2 copy-number calls by Paraphase are highly concordant with orthogonal methods (99.2% for SMN1 and 100% for SMN2). We applied Paraphase to 438 samples across 5 ethnic populations to conduct a population-wide haplotype analysis of these highly homologous genes. We identified major SMN1 and SMN2 haplogroups and characterized their co-segregation through pedigree-based analyses. We identified two SMN1 haplotypes that form a common two-copy SMN1 allele in African populations. Testing positive for these two haplotypes in an individual with two copies of SMN1 gives a silent carrier risk of 88.5%, which is significantly higher than the currently used marker (1.7%-3.0%). Extending beyond simple copy-number testing, Paraphase can detect pathogenic variants and enable potential haplotype-based screening of silent carriers through statistical phasing of haplotypes into alleles. Future analysis of larger population data will allow identification of more diverse haplotypes and genetic markers for silent carriers.


Assuntos
Atrofia Muscular Espinal , Lactente , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/diagnóstico , Mutação , Dosagem de Genes , Linhagem , Análise de Sequência , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética
3.
Genet Med ; 26(3): 101051, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38131308

RESUMO

PURPOSE: The UK 100,000 Genomes Project offered participants screening for additional findings (AFs) in genes associated with familial hypercholesterolemia (FH) or hereditary cancer syndromes including breast/ovarian cancer (HBOC), Lynch, familial adenomatous polyposis, MYH-associated polyposis, multiple endocrine neoplasia (MEN), and von Hippel-Lindau. Here, we report disclosure processes, manifestation of AF-related disease, outcomes, and costs. METHODS: An observational study in an area representing one-fifth of England. RESULTS: Data were collected from 89 adult AF recipients. At disclosure, among 57 recipients of a cancer-predisposition-associated AF and 32 recipients of an FH-associated AF, 35% and 88%, respectively, had personal and/or family history evidence of AF-related disease. During post-disclosure investigations, 4 cancer-AF recipients had evidence of disease, including 1 medullary thyroid cancer. Six women with an HBOC AF, 3 women with a Lynch syndrome AF, and 2 individuals with a MEN AF elected for risk-reducing surgery. New hyperlipidemia diagnoses were made in 6 FH-AF recipients and treatment (re-)initiated for 7 with prior hyperlipidemia. Generating and disclosing AFs in this region cost £1.4m; £8680 per clinically significant AF. CONCLUSION: Generation and disclosure of AFs identifies individuals with and without personal or familial evidence of disease and prompts appropriate clinical interventions. Results can inform policy toward secondary findings.


Assuntos
Neoplasias da Mama , Hiperlipidemias , Síndromes Neoplásicas Hereditárias , Adulto , Humanos , Feminino , Testes Genéticos/métodos , Revelação , Síndromes Neoplásicas Hereditárias/genética , Neoplasias da Mama/genética , Hiperlipidemias/genética , Atenção à Saúde , Predisposição Genética para Doença
4.
J Med Genet ; 60(8): 810-818, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36669873

RESUMO

BACKGROUND: Genomic variant prioritisation is one of the most significant bottlenecks to mainstream genomic testing in healthcare. Tools to improve precision while ensuring high recall are critical to successful mainstream clinical genomic testing, in particular for whole genome sequencing where millions of variants must be considered for each patient. METHODS: We developed EyeG2P, a publicly available database and web application using the Ensembl Variant Effect Predictor. EyeG2P is tailored for efficient variant prioritisation for individuals with inherited ophthalmic conditions. We assessed the sensitivity of EyeG2P in 1234 individuals with a broad range of eye conditions who had previously received a confirmed molecular diagnosis through routine genomic diagnostic approaches. For a prospective cohort of 83 individuals, we assessed the precision of EyeG2P in comparison with routine diagnostic approaches. For 10 additional individuals, we assessed the utility of EyeG2P for whole genome analysis. RESULTS: EyeG2P had 99.5% sensitivity for genomic variants previously identified as clinically relevant through routine diagnostic analysis (n=1234 individuals). Prospectively, EyeG2P enabled a significant increase in precision (35% on average) in comparison with routine testing strategies (p<0.001). We demonstrate that incorporation of EyeG2P into whole genome sequencing analysis strategies can reduce the number of variants for analysis to six variants, on average, while maintaining high diagnostic yield. CONCLUSION: Automated filtering of genomic variants through EyeG2P can increase the efficiency of diagnostic testing for individuals with a broad range of inherited ophthalmic disorders.


Assuntos
Bases de Dados Genéticas , Oftalmopatias , Testes Genéticos , Genoma Humano , Genômica , Oftalmopatias/genética , Humanos , Variação Genética
6.
N Engl J Med ; 364(12): 1134-43, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21428769

RESUMO

BACKGROUND: Carbamazepine causes various forms of hypersensitivity reactions, ranging from maculopapular exanthema to severe blistering reactions. The HLA-B*1502 allele has been shown to be strongly correlated with carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS-TEN) in the Han Chinese and other Asian populations but not in European populations. METHODS: We performed a genomewide association study of samples obtained from 22 subjects with carbamazepine-induced hypersensitivity syndrome, 43 subjects with carbamazepine-induced maculopapular exanthema, and 3987 control subjects, all of European descent. We tested for an association between disease and HLA alleles through proxy single-nucleotide polymorphisms and imputation, confirming associations by high-resolution sequence-based HLA typing. We replicated the associations in samples from 145 subjects with carbamazepine-induced hypersensitivity reactions. RESULTS: The HLA-A*3101 allele, which has a prevalence of 2 to 5% in Northern European populations, was significantly associated with the hypersensitivity syndrome (P=3.5×10(-8)). An independent genomewide association study of samples from subjects with maculopapular exanthema also showed an association with the HLA-A*3101 allele (P=1.1×10(-6)). Follow-up genotyping confirmed the variant as a risk factor for the hypersensitivity syndrome (odds ratio, 12.41; 95% confidence interval [CI], 1.27 to 121.03), maculopapular exanthema (odds ratio, 8.33; 95% CI, 3.59 to 19.36), and SJS-TEN (odds ratio, 25.93; 95% CI, 4.93 to 116.18). CONCLUSIONS: The presence of the HLA-A*3101 allele was associated with carbamazepine-induced hypersensitivity reactions among subjects of Northern European ancestry. The presence of the allele increased the risk from 5.0% to 26.0%, whereas its absence reduced the risk from 5.0% to 3.8%. (Funded by the U.K. Department of Health and others.).


Assuntos
Anticonvulsivantes/efeitos adversos , Carbamazepina/efeitos adversos , Hipersensibilidade a Drogas/genética , Antígenos HLA-A/genética , População Branca/genética , Anticonvulsivantes/uso terapêutico , Carbamazepina/uso terapêutico , Exantema/induzido quimicamente , Exantema/genética , Estudo de Associação Genômica Ampla , Genótipo , Teste de Histocompatibilidade , Humanos , Polimorfismo de Nucleotídeo Único , Síndrome de Stevens-Johnson/induzido quimicamente , Síndrome de Stevens-Johnson/genética
7.
Mov Disord ; 29(2): 245-51, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24227479

RESUMO

Dystonia is a common movement disorder. A number of monogenic causes have been identified. However, the majority of dystonia cases are not explained by single gene defects. Cervical dystonia is one of the commonest forms without genetic causes identified. This pilot study aimed to identify large effect-size risk loci in cervical dystonia. A genomewide association study (GWAS) was performed. British resident cervical dystonia patients of European descent were genotyped using the Illumina-610-Quad. Comparison was made with controls of European descent from the Wellcome Trust Case Control Consortium using logistic regression algorithm from PLINK. SNPs not genotyped by the array were imputed with 1000 Genomes Project data using the MaCH algorithm and minimac. Postimputation analysis was done with the mach2dat algorithm using a logistic regression model. After quality control measures, 212 cases were compared with 5173 controls. No single SNP passed the genomewide significant level of 5 × 10(-8) in the analysis of genotyped SNP in PLINK. Postimputation, there were 5 clusters of SNPs that had P value <5 × 10(-6) , and the best cluster of SNPs was found near exon 1 of NALCN, (sodium leak channel) with P = 9.76 × 10(-7) . Several potential regions were found in the GWAS and imputation analysis. The lowest P value was found in NALCN. Dysfunction of this ion channel is a plausible cause for dystonia. Further replication in another cohort is needed to confirm this finding. We make this data publicly available to encourage further analyses of this disorder.


Assuntos
Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Canais de Sódio/genética , Torcicolo/genética , Idoso , Inglaterra , Éxons/genética , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Canais Iônicos , Masculino , Proteínas de Membrana , Pessoa de Meia-Idade
8.
Brain ; 136(Pt 10): 3140-50, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24014518

RESUMO

Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10(-9), odds ratio (A) = 1.42, 95% confidence interval: 1.26-1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizures.


Assuntos
Epilepsia do Lobo Temporal/genética , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Esclerose/genética , Convulsões Febris/genética , Epilepsia do Lobo Temporal/etiologia , Estudo de Associação Genômica Ampla/métodos , Hipocampo/patologia , Humanos , Estudos Prospectivos , Convulsões Febris/diagnóstico , Lobo Temporal/patologia
9.
Am J Hum Genet ; 86(5): 707-18, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20398883

RESUMO

Deletions at 16p13.11 are associated with schizophrenia, mental retardation, and most recently idiopathic generalized epilepsy. To evaluate the role of 16p13.11 deletions, as well as other structural variation, in epilepsy disorders, we used genome-wide screens to identify copy number variation in 3812 patients with a diverse spectrum of epilepsy syndromes and in 1299 neurologically-normal controls. Large deletions (> 100 kb) at 16p13.11 were observed in 23 patients, whereas no control had a deletion greater than 16 kb. Patients, even those with identically sized 16p13.11 deletions, presented with highly variable epilepsy phenotypes. For a subset of patients with a 16p13.11 deletion, we show a consistent reduction of expression for included genes, suggesting that haploinsufficiency might contribute to pathogenicity. We also investigated another possible mechanism of pathogenicity by using hybridization-based capture and next-generation sequencing of the homologous chromosome for ten 16p13.11-deletion patients to look for unmasked recessive mutations. Follow-up genotyping of suggestive polymorphisms failed to identify any convincing recessive-acting mutations in the homologous interval corresponding to the deletion. The observation that two of the 16p13.11 deletions were larger than 2 Mb in size led us to screen for other large deletions. We found 12 additional genomic regions harboring deletions > 2 Mb in epilepsy patients, and none in controls. Additional evaluation is needed to characterize the role of these exceedingly large, non-locus-specific deletions in epilepsy. Collectively, these data implicate 16p13.11 and possibly other large deletions as risk factors for a wide range of epilepsy disorders, and they appear to point toward haploinsufficiency as a contributor to the pathogenicity of deletions.


Assuntos
Cromossomos Humanos Par 16 , Suscetibilidade a Doenças , Epilepsia/genética , Mutação , Deleção de Sequência , Humanos , Hibridização de Ácido Nucleico/genética , Síndrome
10.
Br J Haematol ; 162(4): 530-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23718193

RESUMO

Diamond-Blackfan anaemia (DBA) is caused by inactivating mutations in ribosomal protein (RP) genes, with mutations in 13 of the 80 RP genes accounting for 50-60% of cases. The remaining 40-50% cases may harbour mutations in one of the remaining RP genes, but the very low frequencies render conventional genetic screening as challenging. We, therefore, applied custom enrichment technology combined with high-throughput sequencing to screen all 80 RP genes. Using this approach, we identified and validated inactivating mutations in 15/17 (88%) DBA patients. Target enrichment combined with high-throughput sequencing is a robust and improved methodology for the genetic diagnosis of DBA.


Assuntos
Anemia de Diamond-Blackfan/genética , Análise Mutacional de DNA , DNA Ribossômico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Ribossômicas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Códon sem Sentido , DNA Ribossômico/sangue , Feminino , Mutação da Fase de Leitura , Biblioteca Gênica , Humanos , Masculino , Alinhamento de Sequência , Análise de Sequência de DNA , Deleção de Sequência
11.
Genet Med ; 15(12): 948-57, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23680767

RESUMO

PURPOSE: Familial hypercholesterolemia is a common Mendelian disorder associated with early-onset coronary heart disease that can be treated by cholesterol-lowering drugs. The majority of cases in the United Kingdom are currently without a molecular diagnosis, which is partly due to the cost and time associated with standard screening techniques. The main purpose of this study was to test the sensitivity and specificity of two next-generation sequencing protocols for genetic diagnosis of familial hypercholesterolemia. METHODS: Libraries were prepared for next-generation sequencing by two target enrichment protocols; one using the SureSelect Target Enrichment System and the other using the PCR-based Access Array platform. RESULTS: In the validation cohort, both protocols showed 100% specificity, whereas the sensitivity for short variant detection was 100% for the SureSelect Target Enrichment and 98% for the Access Array protocol. Large deletions/duplications were only detected using the SureSelect Target Enrichment protocol. In the prospective cohort, the mutation detection rate using the Access Array was highest in patients with clinically definite familial hypercholesterolemia (67%), followed by patients with possible familial hypercholesterolemia (26%). CONCLUSION: We have shown the potential of target enrichment methods combined with next-generation sequencing for molecular diagnosis of familial hypercholesterolemia. Adopting these assays for patients with suspected familial hypercholesterolemia could improve cost-effectiveness and increase the overall number of patients with a molecular diagnosis.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Hiperlipoproteinemia Tipo II/diagnóstico , Técnicas de Diagnóstico Molecular , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos , Hiperlipoproteinemia Tipo II/genética , Pessoa de Meia-Idade , Taxa de Mutação , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de DNA , Adulto Jovem
12.
Amyotroph Lateral Scler ; 13(4): 341-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22409358

RESUMO

While some cases of familial ALS can be entirely attributed to known inherited variation, the majority (∼ 90%) are sporadic, where the cause(s) are not entirely understood. Both genetic and environmental factors may contribute to susceptibility. Mitochondrial damage, a common feature of neurodegenerative disease, is observed in most patients and inherited polymorphism in the mitochondrial genome has been suggested as a contributing factor. We used an economic and efficient method to test whether such involvement is probable. We genotyped 22 mtDNA coding region SNPs and sequenced the mtDNA hypervariable region 1 to determine the position of each mitochondrial genome within the genealogy of mitochondrial haplotypes in samples of ALS patients (n = 700) and controls (n = 462) from two European populations. We compared haplotype and haplogroup distribution in cases and controls drawn from the same populations. No statistical difference was observed between cases and controls at either the haplogroup or haplotype level (p = ≥ 0.2). In conclusion, it is unlikely that common, shared genetic variants in the mitochondrial genome contribute substantially to ALS. Combining the data with other studies will allow meta-analysis to look for variants with modest effect sizes. The sequencing of complete mitochondrial genomes will be required to assess the role of rare mutations.


Assuntos
Esclerose Lateral Amiotrófica/genética , DNA Mitocondrial/genética , Predisposição Genética para Doença , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Estudos de Associação Genética , Genoma Mitocondrial , Genótipo , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , População Branca/genética
13.
PLoS Genet ; 5(2): e1000373, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19197363

RESUMO

We report a genome-wide assessment of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) in schizophrenia. We investigated SNPs using 871 patients and 863 controls, following up the top hits in four independent cohorts comprising 1,460 patients and 12,995 controls, all of European origin. We found no genome-wide significant associations, nor could we provide support for any previously reported candidate gene or genome-wide associations. We went on to examine CNVs using a subset of 1,013 cases and 1,084 controls of European ancestry, and a further set of 60 cases and 64 controls of African ancestry. We found that eight cases and zero controls carried deletions greater than 2 Mb, of which two, at 8p22 and 16p13.11-p12.4, are newly reported here. A further evaluation of 1,378 controls identified no deletions greater than 2 Mb, suggesting a high prior probability of disease involvement when such deletions are observed in cases. We also provide further evidence for some smaller, previously reported, schizophrenia-associated CNVs, such as those in NRXN1 and APBA2. We could not provide strong support for the hypothesis that schizophrenia patients have a significantly greater "load" of large (>100 kb), rare CNVs, nor could we find common CNVs that associate with schizophrenia. Finally, we did not provide support for the suggestion that schizophrenia-associated CNVs may preferentially disrupt genes in neurodevelopmental pathways. Collectively, these analyses provide the first integrated study of SNPs and CNVs in schizophrenia and support the emerging view that rare deleterious variants may be more important in schizophrenia predisposition than common polymorphisms. While our analyses do not suggest that implicated CNVs impinge on particular key pathways, we do support the contribution of specific genomic regions in schizophrenia, presumably due to recurrent mutation. On balance, these data suggest that very few schizophrenia patients share identical genomic causation, potentially complicating efforts to personalize treatment regimens.


Assuntos
Dosagem de Genes/genética , Variação Genética/genética , Genoma Humano , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Processamento Alternativo , Estudos de Coortes , Humanos
14.
Front Genet ; 13: 866168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711926

RESUMO

The transformative potential of whole genome sequencing (WGS) as a diagnostic tool in healthcare has been demonstrated by initiatives including the 100,000 Genomes Project and is now offered to certain patients in the National Health Service (NHS) in England. Building on these foundations, the utility of WGS in the newborn period can now be explored. Genomics England is working in partnership with NHS England and NHS Improvement and other healthcare, patient and public interest groups to design a research program embedded in the NHS to explore the potential challenges and implications of offering WGS in all newborns. The program will aim to: 1) evaluate the feasibility, utility and impact on the NHS of screening for childhood-onset rare actionable genetic conditions; 2) understand how, with consent, genomic and healthcare data could be used to enable research to develop new diagnostics and treatments; and 3) explore the implications of storing an individual's genome for use over their lifetime. Recognizing the important practical, scientific and ethical questions that we must explore in dialogue with the public and experts, we are taking a collaborative, evidence-based and ethically deliberate approach to designing the program. An iterative co-design process including a nationwide public dialogue has identified emergent themes and ethical considerations which are the focus of the program's design. These themes will be further developed through continued engagement with healthcare professionals, researchers, ethics experts, patient groups and the public, with an ongoing commitment to embedding ongoing ethics research and co-design into the delivery of the program.

15.
Int J Neonatal Screen ; 8(3)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35892470

RESUMO

Newborn screening for treatable disorders is one of the great public health success stories of the twentieth century worldwide. This commentary examines the potential use of a new technology, next generation sequencing, in newborn screening through the lens of the Wilson and Jungner criteria. Each of the ten criteria are examined to show how they might be applied by programmes using genomic sequencing as a screening tool. While there are obvious advantages to a method that can examine all disease-causing genes in a single assay at an ever-diminishing cost, implementation of genomic sequencing at scale presents numerous challenges, some which are intrinsic to screening for rare disease and some specifically linked to genomics-led screening. In addition to questions specific to routine screening considerations, the ethical, communication, data management, legal, and social implications of genomic screening programmes require consideration.

16.
Lancet Neurol ; 21(3): 234-245, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35182509

RESUMO

BACKGROUND: Repeat expansion disorders affect about 1 in 3000 individuals and are clinically heterogeneous diseases caused by expansions of short tandem DNA repeats. Genetic testing is often locus-specific, resulting in underdiagnosis of people who have atypical clinical presentations, especially in paediatric patients without a previous positive family history. Whole genome sequencing is increasingly used as a first-line test for other rare genetic disorders, and we aimed to assess its performance in the diagnosis of patients with neurological repeat expansion disorders. METHODS: We retrospectively assessed the diagnostic accuracy of whole genome sequencing to detect the most common repeat expansion loci associated with neurological outcomes (AR, ATN1, ATXN1, ATXN2, ATXN3, ATXN7, C9orf72, CACNA1A, DMPK, FMR1, FXN, HTT, and TBP) using samples obtained within the National Health Service in England from patients who were suspected of having neurological disorders; previous PCR test results were used as the reference standard. The clinical accuracy of whole genome sequencing to detect repeat expansions was prospectively examined in previously genetically tested and undiagnosed patients recruited in 2013-17 to the 100 000 Genomes Project in the UK, who were suspected of having a genetic neurological disorder (familial or early-onset forms of ataxia, neuropathy, spastic paraplegia, dementia, motor neuron disease, parkinsonian movement disorders, intellectual disability, or neuromuscular disorders). If a repeat expansion call was made using whole genome sequencing, PCR was used to confirm the result. FINDINGS: The diagnostic accuracy of whole genome sequencing to detect repeat expansions was evaluated against 793 PCR tests previously performed within the NHS from 404 patients. Whole genome sequencing correctly classified 215 of 221 expanded alleles and 1316 of 1321 non-expanded alleles, showing 97·3% sensitivity (95% CI 94·2-99·0) and 99·6% specificity (99·1-99·9) across the 13 disease-associated loci when compared with PCR test results. In samples from 11 631 patients in the 100 000 Genomes Project, whole genome sequencing identified 81 repeat expansions, which were also tested by PCR: 68 were confirmed as repeat expansions in the full pathogenic range, 11 were non-pathogenic intermediate expansions or premutations, and two were non-expanded repeats (16% false discovery rate). INTERPRETATION: In our study, whole genome sequencing for the detection of repeat expansions showed high sensitivity and specificity, and it led to identification of neurological repeat expansion disorders in previously undiagnosed patients. These findings support implementation of whole genome sequencing in clinical laboratories for diagnosis of patients who have a neurological presentation consistent with a repeat expansion disorder. FUNDING: Medical Research Council, Department of Health and Social Care, National Health Service England, National Institute for Health Research, and Illumina.


Assuntos
Expansão das Repetições de DNA , Medicina Estatal , Criança , Proteína do X Frágil da Deficiência Intelectual/genética , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Reino Unido , Sequenciamento Completo do Genoma/métodos
17.
Epilepsia ; 52(8): 1388-92, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21635232

RESUMO

PURPOSE: Several recent reports of genomic microdeletions in epilepsy will generate further research; discovery of more microdeletions and other important classes of variants may follow. Detection of such genetic abnormalities in patients being evaluated for surgical treatment might raise concern that a genetic defect, possibly widely expressed in the brain, will affect surgical outcome. METHODS: A reevaluation was undertaken of clinical presurgical data, histopathology of surgical specimen, and postsurgical outcome in patients with mesial temporal lobe epilepsy (MTLE) who have had surgical treatment for their drug-resistant seizures, and who have been found to have particular genomic microdeletions. KEY FINDINGS: Three thousand eight hundred twelve patients with epilepsy were genotyped and had a genome-wide screen to identify copy number variation. Ten patients with MTLE, who had resective epilepsy surgery, were found to have 16p13.11 microdeletions or other microdeletions >1 Mb. On histopathology, eight had classical hippocampal sclerosis (HS), one had nonspecific findings, and one had a hamartoma. Median postsurgical follow-up time was 48 months (range 10-156 months). All patients with HS were seizure-free after surgery, International League Against Epilepsy (ILAE) outcome class 1, at last follow-up; the patient with nonspecific pathology had recurrence of infrequent seizures after 7 years of seizure freedom. The patient with a hamartoma never became seizure-free. SIGNIFICANCE: Large microdeletions can be found in patients with "typical" MTLE. In this small series, patients with MTLE who meet criteria for resective surgery and harbor large microdeletions, at least those we have detected, can have a good postsurgical outcome. Our findings add to the spectrum of causal heterogeneity of MTLE + HS.


Assuntos
Deleção Cromossômica , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/cirurgia , Procedimentos Neurocirúrgicos/métodos , Contraindicações , Variações do Número de Cópias de DNA , Epilepsia do Lobo Temporal/patologia , Feminino , Seguimentos , Estudo de Associação Genômica Ampla , Genótipo , Hipocampo/patologia , Hipocampo/cirurgia , Humanos , Masculino , Esclerose/patologia , Esclerose/cirurgia , Resultado do Tratamento
18.
Brain ; 133(Pt 7): 2136-47, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20522523

RESUMO

Partial epilepsies have a substantial heritability. However, the actual genetic causes are largely unknown. In contrast to many other common diseases for which genetic association-studies have successfully revealed common variants associated with disease risk, the role of common variation in partial epilepsies has not yet been explored in a well-powered study. We undertook a genome-wide association-study to identify common variants which influence risk for epilepsy shared amongst partial epilepsy syndromes, in 3445 patients and 6935 controls of European ancestry. We did not identify any genome-wide significant association. A few single nucleotide polymorphisms may warrant further investigation. We exclude common genetic variants with effect sizes above a modest 1.3 odds ratio for a single variant as contributors to genetic susceptibility shared across the partial epilepsies. We show that, at best, common genetic variation can only have a modest role in predisposition to the partial epilepsies when considered across syndromes in Europeans. The genetic architecture of the partial epilepsies is likely to be very complex, reflecting genotypic and phenotypic heterogeneity. Larger meta-analyses are required to identify variants of smaller effect sizes (odds ratio<1.3) or syndrome-specific variants. Further, our results suggest research efforts should also be directed towards identifying the multiple rare variants likely to account for at least part of the heritability of the partial epilepsies. Data emerging from genome-wide association-studies will be valuable during the next serious challenge of interpreting all the genetic variation emerging from whole-genome sequencing studies.


Assuntos
Epilepsias Parciais/diagnóstico , Epilepsias Parciais/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Feminino , Humanos , Internacionalidade , Masculino , Polimorfismo de Nucleotídeo Único/genética , Síndrome
19.
J Pharmacol Exp Ther ; 332(2): 599-611, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19855097

RESUMO

The commonly prescribed antiepileptic drug phenytoin has a narrow therapeutic range and wide interindividual variability in clearance explained in part by CYP2C9 and CYP2C19 coding variants. After finding a paradoxically low urinary phenytoin metabolite (S)/(R) ratio in subjects receiving phenytoin maintenance therapy with a CYP2C9*1/*1 and CYP2C19*1/*2 genotype, we hypothesized that CYP2C9 regulatory polymorphisms (rPMs), G-3089A and -2663delTG, in linkage disequilibrium with CYP2C19*2 were responsible. These rPMs explained as much as 10% of the variation in phenytoin maintenance dose in epileptic patients, but were not correlated with other patients' warfarin dose requirements or with phenytoin metabolite ratio in human liver microsomes. We hypothesized the rPMs affected CYP2C9 induction by phenytoin, a pregnane X receptor (PXR), and constitutive androstane receptor (CAR) activator. Transfection studies showed that CYP2C9 reporters with wild-type versus variant alleles had similar basal activity but significantly greater phenytoin induction by cotransfected PXR, CAR, and Nrf2 and less Yin Yang 1 transcription factor repression. Phenytoin induction of CYP2C9 was greater in human hepatocytes with the CYP2C9 wild type versus variant haplotype. Therefore, CYP2C9 rPMs affect phenytoin-dependent induction of CYP2C9 and phenytoin metabolism in humans, with an effect size comparable with that for CYP2C9*2 and 2C9*3. These findings may also be relevant to the clinical use of other PXR, CAR, and Nrf2 activators.


Assuntos
Anticonvulsivantes/farmacocinética , Hidrocarboneto de Aril Hidroxilases/genética , Indução Enzimática/genética , Fenitoína/farmacocinética , Polimorfismo de Nucleotídeo Único , Anticoagulantes/administração & dosagem , Anticonvulsivantes/administração & dosagem , Hidrocarboneto de Aril Hidroxilases/biossíntese , Sequência de Bases , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2C9 , Relação Dose-Resposta a Droga , Epilepsia/tratamento farmacológico , Genótipo , Células Hep G2 , Humanos , Desequilíbrio de Ligação , Fígado/enzimologia , Microssomos Hepáticos/metabolismo , Dados de Sequência Molecular , Fenitoína/administração & dosagem , Regiões Promotoras Genéticas , Varfarina/administração & dosagem
20.
Sci Rep ; 9(1): 16576, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719542

RESUMO

Individuals who have ocular features of albinism and skin pigmentation in keeping with their familial background present a considerable diagnostic challenge. Timely diagnosis through genomic testing can help avert diagnostic odysseys and facilitates accurate genetic counselling and tailored specialist management. Here, we report the clinical and gene panel testing findings in 12 children with presumed ocular albinism. A definitive molecular diagnosis was made in 8/12 probands (67%) and a possible molecular diagnosis was identified in a further 3/12 probands (25%). TYR was the most commonly mutated gene in this cohort (75% of patients, 9/12). A disease-causing TYR haplotype comprised of two common, functional polymorphisms, TYR c.[575 C > A;1205 G > A] p.[(Ser192Tyr);(Arg402Gln)], was found to be particularly prevalent. One participant had GPR143-associated X-linked ocular albinism and another proband had biallelic variants in SLC38A8, a glutamine transporter gene associated with foveal hypoplasia and optic nerve misrouting without pigmentation defects. Intriguingly, 2/12 individuals had a single, rare, likely pathogenic variant in each of TYR and OCA2 - a significant enrichment compared to a control cohort of 4046 individuals from the 100,000 genomes project pilot dataset. Overall, our findings highlight that panel-based genetic testing is a clinically useful test with a high diagnostic yield in children with partial/ocular albinism.


Assuntos
Albinismo/genética , Variação Genética , Adolescente , Albinismo/diagnóstico , Criança , Pré-Escolar , Estudos de Coortes , Olho/patologia , Feminino , Genótipo , Humanos , Lactente , Masculino , Pigmentação da Pele/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa