Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nat Immunol ; 24(7): 1087-1097, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37264229

RESUMO

Human leukocyte antigen (HLA)-E binds epitopes derived from HLA-A, HLA-B, HLA-C and HLA-G signal peptides (SPs) and serves as a ligand for CD94/NKG2A and CD94/NKG2C receptors expressed on natural killer and T cell subsets. We show that among 16 common classical HLA class I SP variants, only 6 can be efficiently processed to generate epitopes that enable CD94/NKG2 engagement, which we term 'functional SPs'. The single functional HLA-B SP, known as HLA-B/-21M, induced high HLA-E expression, but conferred the lowest receptor recognition. Consequently, HLA-B/-21M SP competes with other SPs for providing epitope to HLA-E and reduces overall recognition of target cells by CD94/NKG2A, calling for reassessment of previous disease models involving HLA-B/-21M. Genetic population data indicate a positive correlation between frequencies of functional SPs in humans and corresponding cytomegalovirus mimics, suggesting a means for viral escape from host responses. The systematic, quantitative approach described herein will facilitate development of prediction algorithms for accurately measuring the impact of CD94/NKG2-HLA-E interactions in disease resistance/susceptibility.


Assuntos
Células Matadoras Naturais , Sinais Direcionadores de Proteínas , Humanos , Antígenos de Histocompatibilidade Classe I , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Subfamília D de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília D de Receptores Semelhantes a Lectina de Células NK/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Células Matadoras Naturais/metabolismo , Antígenos HLA-E
2.
Nucleic Acids Res ; 50(3): 1601-1619, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35104872

RESUMO

Canonical eukaryotic mRNA translation requires 5'cap recognition by initiation factor 4E (eIF4E). In contrast, many positive-strand RNA virus genomes lack a 5'cap and promote translation by non-canonical mechanisms. Among plant viruses, PTEs are a major class of cap-independent translation enhancers located in/near the 3'UTR that recruit eIF4E to greatly enhance viral translation. Previous work proposed a single form of PTE characterized by a Y-shaped secondary structure with two terminal stem-loops (SL1 and SL2) atop a supporting stem containing a large, G-rich asymmetric loop that forms an essential pseudoknot (PK) involving C/U residues located between SL1 and SL2. We found that PTEs with less than three consecutive cytidylates available for PK formation have an upstream stem-loop that forms a kissing loop interaction with the apical loop of SL2, important for formation/stabilization of PK. PKs found in both subclasses of PTE assume a specific conformation with a hyperreactive guanylate (G*) in SHAPE structure probing, previously found critical for binding eIF4E. While PTE PKs were proposed to be formed by Watson-Crick base-pairing, alternative chemical probing and 3D modeling indicate that the Watson-Crick faces of G* and an adjacent guanylate have high solvent accessibilities. Thus, PTE PKs are likely composed primarily of non-canonical interactions.


Assuntos
Biossíntese de Proteínas , Tombusviridae , Regiões 3' não Traduzidas , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Conformação de Ácido Nucleico , RNA Viral/química , Tombusviridae/fisiologia
3.
Immunogenetics ; 75(3): 263-267, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36449053

RESUMO

The leukocyte immunoglobulin-like receptor (LILR)B3 and LILRA6 genes encode homologous myeloid inhibitory and activating orphan receptors, respectively. Both genes exhibit a strikingly high level of polymorphism at the amino acid level and LILRA6 (but not LILRB3) displays copy number variation (CNV). Although multiple alleles have been reported for both genes, limited data is available on frequencies of these alleles among humans. We have sequenced LILRB3/A6 exons encoding signal peptides and ectodomains in 91 healthy blood donors of European descent who carry one or two copies of LILRA6 per diploid genome. Analysis of haplotypes among individuals with two LILRA6 copies, representing the majority in this cohort (N = 86), shows that common LILRB3 and LILRA6 alleles encode some distinct amino acid sequences in homologous regions of the receptors, which could potentially impact their respective functions differentially. Comparison of sequences in individuals with one vs. two copies of LILRA6 supports non-allelic homologous recombination between LILRB3 and LILRA6 as a mechanism for generating LILRA6 CNV and LILRB3 diversity. These data characterize LILRB3/LILRA6 genetic variation in more detail than previously described and underscore the need to determine their ligands.


Assuntos
Antígenos CD , Variações do Número de Cópias de DNA , População Europeia , Receptores Imunológicos , Humanos , Alelos , Polimorfismo Genético , Receptores Imunológicos/genética , Antígenos CD/genética
4.
Nucleic Acids Res ; 49(22): 13179-13193, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34871450

RESUMO

Cellular and virus-coded long non-coding (lnc) RNAs support multiple roles related to biological and pathological processes. Several lncRNAs sequester their 3' termini to evade cellular degradation machinery, thereby supporting disease progression. An intramolecular triplex involving the lncRNA 3' terminus, the element for nuclear expression (ENE), stabilizes RNA transcripts and promotes persistent function. Therefore, such ENE triplexes, as presented here in Kaposi's sarcoma-associated herpesvirus (KSHV) polyadenylated nuclear (PAN) lncRNA, represent targets for therapeutic development. Towards identifying novel ligands targeting the PAN ENE triplex, we screened a library of immobilized small molecules and identified several triplex-binding chemotypes, the tightest of which exhibits micromolar binding affinity. Combined biophysical, biochemical, and computational strategies localized ligand binding to a platform created near a dinucleotide bulge at the base of the triplex. Crystal structures of apo (3.3 Å) and ligand-soaked (2.5 Å) ENE triplexes, which include a stabilizing basal duplex, indicate significant local structural rearrangements within this dinucleotide bulge. MD simulations and a modified nucleoside analog interference technique corroborate the role of the bulge and the base of the triplex in ligand binding. Together with recently discovered small molecules that reduce nuclear MALAT1 lncRNA levels by engaging its ENE triplex, our data supports the potential of targeting RNA triplexes with small molecules.


Assuntos
Herpesvirus Humano 8/metabolismo , Nucleotídeos/metabolismo , Poli A/metabolismo , RNA Longo não Codificante/metabolismo , RNA Viral/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Sequência de Bases , Cristalografia por Raios X , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Conformação de Ácido Nucleico , Nucleotídeos/genética , Poli A/química , Poli A/genética , Estabilidade de RNA/genética , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , RNA Viral/química , RNA Viral/genética , Sarcoma de Kaposi/virologia , Bibliotecas de Moléculas Pequenas/química
5.
Molecules ; 28(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838792

RESUMO

The global burden imposed by hepatitis B virus (HBV) infection necessitates the discovery and design of novel antiviral drugs to complement existing treatments. One attractive and underexploited therapeutic target is ε, an ~85-nucleotide (nt) cis-acting regulatory stem-loop RNA located at the 3'- and 5'-ends of the pre-genomic RNA (pgRNA). Binding of the 5'-end ε to the viral polymerase protein (P) triggers two early events in HBV replication: pgRNA and P packaging and reverse transcription. Our recent solution nuclear magnetic resonance spectroscopy structure of ε permits structure-informed drug discovery efforts that are currently lacking for P. Here, we employ a virtual screen against ε using a Food and Drug Administration (FDA)-approved compound library, followed by in vitro binding assays. This approach revealed that the anti-hepatitis C virus drug Daclatasvir is a selective ε-targeting ligand. Additional molecular dynamics simulations demonstrated that Daclatasvir targets ε at its flexible 6-nt priming loop (PL) bulge and modulates its dynamics. Given the functional importance of the PL, our work supports the notion that targeting ε dynamics may be an effective anti-HBV therapeutic strategy.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Replicação Viral , RNA Viral/genética , Genômica
6.
Nature ; 512(7514): 265-9, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25043019

RESUMO

Programmed -1 ribosomal frameshift (-1 PRF) signals redirect translating ribosomes to slip back one base on messenger RNAs. Although well characterized in viruses, how these elements may regulate cellular gene expression is not understood. Here we describe a -1 PRF signal in the human mRNA encoding CCR5, the HIV-1 co-receptor. CCR5 mRNA-mediated -1 PRF is directed by an mRNA pseudoknot, and is stimulated by at least two microRNAs. Mapping the mRNA-miRNA interaction suggests that formation of a triplex RNA structure stimulates -1 PRF. A -1 PRF event on the CCR5 mRNA directs translating ribosomes to a premature termination codon, destabilizing it through the nonsense-mediated mRNA decay pathway. At least one additional mRNA decay pathway is also involved. Functional -1 PRF signals that seem to be regulated by miRNAs are also demonstrated in mRNAs encoding six other cytokine receptors, suggesting a novel mode through which immune responses may be fine-tuned in mammalian cells.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/genética , MicroRNAs/genética , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CCR5/genética , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Sobrevivência Celular , Códon sem Sentido/genética , Células HeLa , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Mensageiro/química , Receptores de Interleucina/genética , Sequências Reguladoras de Ácido Ribonucleico , Ribossomos/metabolismo
7.
Bioinformatics ; 34(24): 4297-4299, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29912310

RESUMO

Summary: Creating clear, visually pleasing 2D depictions of RNA and DNA strands and their interactions is important to facilitate and communicate insights related to nucleic acid structure. Here we present RiboSketch, a secondary structure image production application that enables the visualization of multistranded structures via layout algorithms, comprehensive editing capabilities, and a multitude of simulation modes. These interactive features allow RiboSketch to create publication quality diagrams for structures with a wide range of composition, size and complexity. The program may be run in any web browser without the need for installation, or as a standalone Java application. Availability and implementation: https://rnastructure.cancer.gov/ribosketch.


Assuntos
DNA/química , Conformação de Ácido Nucleico , RNA/química , Software , Algoritmos , Gráficos por Computador
8.
RNA Biol ; 16(12): 1667-1671, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31441369

RESUMO

RNA structure prediction programs remain imperfect and many substructures are still identified by manual exploration, which is most efficiently conducted within an RNA structure drawing program. However, most nucleic acid structure drawing programs have limited capability for structure modification (i.e., breaking and forming new bonds between bases), often requiring that the structure notation be textually edited. RNA2Drawer was developed to allow for graphical structure editing while maintaining the geometry of a drawing (e.g., ellipsoid loops, stems with evenly stacked base pairs) throughout structural changes and manual adjustments to the layout by the user. In addition, the program allows for annotations such as colouring and circling of bases and drawing of tertiary interactions (e.g., pseudoknots). RNA2Drawer can also draw commonly desired elements such as an optionally flattened outermost loop and assists structure editing by automatically highlighting complementary subsequences, which facilitates the discovery of potentially new and alternative pairings, particularly tertiary pairings over long-distances, which are biologically critical in the genomes of many RNA viruses and cannot be accurately predicted by current structure prediction programs. Additionally, RNA2Drawer outputs drawings either as PNG files, or as PPTX and SVG files, such that every object of a drawing (e.g., bases, bonds) is an individual PPTX or SVG object, allowing for further manipulation in Microsoft PowerPoint or a vector graphics editor such as Adobe Illustrator. PowerPoint is the standard for presentations and is often used to create figures for publications, and RNA2Drawer is the first program to export drawings as PPTX files.


Assuntos
Algoritmos , RNA/química , Software , Animais , Pareamento de Bases , Sequência de Bases , Gráficos por Computador , Humanos , Armazenamento e Recuperação da Informação , Conformação de Ácido Nucleico , RNA/genética , RNA/metabolismo , Vírus/genética , Vírus/metabolismo
9.
Nucleic Acids Res ; 45(4): 2210-2220, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28108656

RESUMO

We introduce a new concept that utilizes cognate nucleic acid nanoparticles which are fully complementary and functionally-interdependent to each other. In the described approach, the physical interaction between sets of designed nanoparticles initiates a rapid isothermal shape change which triggers the activation of multiple functionalities and biological pathways including transcription, energy transfer, functional aptamers and RNA interference. The individual nanoparticles are not active and have controllable kinetics of re-association and fine-tunable chemical and thermodynamic stabilities. Computational algorithms were developed to accurately predict melting temperatures of nanoparticles of various compositions and trace the process of their re-association in silico. Additionally, tunable immunostimulatory properties of described nanoparticles suggest that the particles that do not induce pro-inflammatory cytokines and high levels of interferons can be used as scaffolds to carry therapeutic oligonucleotides, while particles with strong interferon and mild pro-inflammatory cytokine induction may qualify as vaccine adjuvants. The presented concept provides a simple, cost-effective and straightforward model for the development of combinatorial regulation of biological processes in nucleic acid nanotechnology.


Assuntos
Nanopartículas/química , Ácidos Nucleicos/química , Aptâmeros de Nucleotídeos , Linhagem Celular Tumoral , Citocinas/metabolismo , DNA/química , DNA/genética , DNA/imunologia , Humanos , Imageamento Tridimensional , Leucócitos Mononucleares/metabolismo , Microscopia de Força Atômica , Modelos Moleculares , Nanotecnologia , Conformação de Ácido Nucleico , Ácidos Nucleicos/genética , Ácidos Nucleicos/imunologia , Oligonucleotídeos/química , Oligonucleotídeos/imunologia , RNA/química , RNA/genética , RNA/imunologia , Interferência de RNA , Termodinâmica , Transcrição Gênica , Transfecção
10.
Langmuir ; 34(49): 15099-15108, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29669419

RESUMO

RNA is an attractive biopolymer for engineering self-assembling materials suitable for biomedical applications. Previously, programmable hexameric RNA rings were developed for the controlled delivery of up to six different functionalities. To increase the potential for functionalization with little impact on nanoparticle topology, we introduce gaps into the double-stranded regions of the RNA rings. Molecular dynamic simulations are used to assess the dynamic behavior and the changes in the flexibility of novel designs. The changes suggested by simulations, however, cannot be clearly confirmed by the conventional techniques such as nondenaturing polyacrylamide gel electrophoresis (native-PAGE) and dynamic light scattering (DLS). Also, an in vitro analysis in primary cultures of human peripheral blood mononuclear cells does not reveal any discrepancy in the immunological recognition of new assemblies. To address these deficiencies, we introduce a computer-assisted quantification strategy. This strategy is based on an algorithmic atomic force microscopy (AFM)-resolved deformation analysis of the RNA nanoparticles studied on a mica/air interface. We validate this computational method by manual image analysis and fitting it to the simulation-predicted results. The presented nanoparticle modification strategy and subsequent AFM-based analysis are anticipated to provide a broad spectrum approach for the future development of nucleic acid-based nanotechnology.


Assuntos
Ar , Silicatos de Alumínio/química , Nanopartículas/química , RNA/química , Linhagem Celular Tumoral , Humanos , Leucócitos Mononucleares/imunologia , Microscopia de Força Atômica/métodos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Maleabilidade , RNA/imunologia
11.
Molecules ; 23(12)2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30558267

RESUMO

Cells frequently simultaneously express RNAs and cognate antisense transcripts without necessarily leading to the formation of RNA duplexes. Here, we present a novel transcriptome-wide experimental approach to ascertain the presence of accessible double-stranded RNA structures based on sequencing of RNA fragments longer than 18 nucleotides that were not degraded by single-strand cutting nucleases. We applied this approach to four different cell lines with respect to three different treatments (native cell lysate, removal of proteins, and removal of ribosomal RNA and proteins). We found that long accessible RNA duplexes were largely absent in native cell lysates, while the number of RNA duplexes was dramatically higher when proteins were removed. The majority of RNA duplexes involved ribosomal transcripts. The duplex formation between different non-ribosomal transcripts appears to be largely of a stochastic nature. These results suggest that cells are-via RNA-binding proteins-mostly devoid of long RNA duplexes, leading to low "noise" in the molecular patterns that are utilized by the innate immune system. These findings have implications for the design of RNA interference (RNAi)-based therapeutics by imposing structural constraints on designed RNA complexes that are intended to have specific properties with respect to Dicer cleavage and target gene downregulation.


Assuntos
RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/uso terapêutico , Proteínas de Ligação a RNA/metabolismo , Sequência de Bases , Endorribonucleases/metabolismo , Células HEK293 , Humanos , Ligação Proteica , RNA de Cadeia Dupla/química , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Solventes
12.
RNA Biol ; 14(11): 1466-1472, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-28548627

RESUMO

How plus-strand [+]RNA virus genomes transition from translation templates to replication templates is a matter of much speculation. We have previously proposed that, for Turnip crinkle virus, binding of the encoded RNA-dependent RNA polymerase (RdRp) to the 3'UTR of the [+]RNA template promotes a regional wide-spread conformational switch to an alternative structure that disassembles the cap-independent translation enhancer (CITE) in the 3'UTR. The active 3'CITE folds into a tRNA-like T-shaped structure (TSS) that binds to 80S ribosomes and 60S subunits in the P-site. In this Point-of-View, we discuss the history of our research on the TSS and our recent report combining coarse level single molecule force spectroscopy (optical tweezers) with fine-grain computer simulations of this experimental process and biochemical approaches to obtain a detailed understanding of how RdRp binding in the TSS vicinity might lead to an extensive rearrangement of the RNA structure.


Assuntos
Carmovirus/genética , Elementos Facilitadores Genéticos , Regulação Viral da Expressão Gênica , RNA Viral/química , RNA Polimerase Dependente de RNA/química , Ribossomos/metabolismo , Regiões 3' não Traduzidas , Pareamento de Bases , Sequência de Bases , Carmovirus/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Pinças Ópticas , Biossíntese de Proteínas , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Ribossomos/genética , Imagem Individual de Molécula
13.
Nucleic Acids Res ; 42(3): 2085-97, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24194608

RESUMO

Control over the simultaneous delivery of different functionalities and their synchronized intracellular activation can greatly benefit the fields of RNA and DNA biomedical nanotechnologies and allow for the production of nanoparticles and various switching devices with controllable functions. We present a system of multiple split functionalities embedded in the cognate pairs of RNA-DNA hybrids which are programmed to recognize each other, re-associate and form a DNA duplex while also releasing the split RNA fragments which upon association regain their original functions. Simultaneous activation of three different functionalities (RNAi, Förster resonance energy transfer and RNA aptamer) confirmed by multiple in vitro and cell culture experiments prove the concept. To automate the design process, a novel computational tool that differentiates between the thermodynamic stabilities of RNA-RNA, RNA-DNA and DNA-DNA duplexes was developed. Moreover, here we demonstrate that besides being easily produced by annealing synthetic RNAs and DNAs, the individual hybrids carrying longer RNAs can be produced by RNA polymerase II-dependent transcription of single-stranded DNA templates.


Assuntos
DNA/química , RNA/química , Aptâmeros de Nucleotídeos/química , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Humanos , Modelos Moleculares , Interferência de RNA , RNA Polimerase II/metabolismo , Termodinâmica , Transcrição Gênica
14.
J Virol ; 88(20): 11696-712, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25100834

RESUMO

Many plant viruses without 5' caps or 3' poly(A) tails contain 3' proximal, cap-independent translation enhancers (3'CITEs) that bind to ribosomal subunits or translation factors thought to assist in ribosome recruitment. Most 3'CITEs participate in a long-distance kissing-loop interaction with a 5' proximal hairpin to deliver ribosomal subunits to the 5' end for translation initiation. Pea Enation Mosaic Virus (PEMV) contains two adjacent 3'CITEs in the center of its 703-nucleotide 3' untranslated region (3'UTR), the ribosome-binding, kissing-loop T-shaped structure (kl-TSS) and eukaryotic translation initiation factor 4E-binding Panicum mosaic virus-like translation enhance (PTE). We now report that PEMV contains a third, independent 3'CITE located near the 3' terminus. This 3'CITE is composed of three hairpins and two pseudoknots, similar to the TSS 3'CITE of the carmovirus Turnip crinkle virus (TCV). As with the TCV TSS, the PEMV 3'TSS is predicted to fold into a T-shaped structure that binds to 80S ribosomes and 60S ribosomal subunits. A small hairpin (kl-H) upstream of the 3'TSS contains an apical loop capable of forming a kissing-loop interaction with a 5' proximal hairpin and is critical for the accumulation of full-length PEMV in protoplasts. Although the kl-H and 3'TSS are dispensable for the translation of a reporter construct containing the complete PEMV 3'UTR in vitro, deleting the normally required kl-TSS and PTE 3'CITEs and placing the kl-H and 3'TSS proximal to the reporter termination codon restores translation to near wild-type levels. This suggests that PEMV requires three 3'CITEs for proper translation and that additional translation enhancers may have been missed if reporter constructs were used in 3'CITE identification. Importance: The rapid life cycle of viruses requires efficient translation of viral-encoded proteins. Many plant RNA viruses contain 3' cap-independent translation enhancers (3'CITEs) to effectively compete with ongoing host translation. Since only single 3'CITEs have been identified for the vast majority of individual viruses, it is widely accepted that this is sufficient for a virus's translational needs. Pea Enation Mosaic Virus possesses a ribosome-binding 3'CITE that can connect to the 5' end through an RNA-RNA interaction and an adjacent eukaryotic translation initiation factor 4E-binding 3'CITE. We report the identification of a third 3'CITE that binds weakly to ribosomes and requires an upstream hairpin to form a bridge between the 3' and 5' ends. Although both ribosome-binding 3'CITEs are critical for virus accumulation in vivo, only the CITE closest to the termination codon of a reporter open reading frame is active, suggesting that artificial constructs used for 3'CITE identification may underestimate the number of CITEs that participate in translation.


Assuntos
Regiões 3' não Traduzidas , Elementos Facilitadores Genéticos , Vírus do Mosaico/genética , Biossíntese de Proteínas , Capuzes de RNA , RNA Viral/química , Ribossomos/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico
15.
Acc Chem Res ; 47(6): 1731-41, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24758371

RESUMO

CONSPECTUS: The use of RNAs as scaffolds for biomedical applications has several advantages compared with other existing nanomaterials. These include (i) programmability, (ii) precise control over folding and self-assembly, (iii) natural functionalities as exemplified by ribozymes, riboswitches, RNAi, editing, splicing, and inherent translation and transcription control mechanisms, (iv) biocompatibility, (v) relatively low immune response, and (vi) relatively low cost and ease of production. We have tapped into several of these properties and functionalities to construct RNA-based functional nanoparticles (RNA NPs). In several cases, the structural core and the functional components of the NPs are inherent in the same construct. This permits control over the spatial disposition of the components, intracellular availability, and precise stoichiometry. To enable the generation of RNA NPs, a pipeline is being developed. On one end, it encompasses the rational design and various computational schemes that promote design of the RNA-based nanoconstructs, ultimately producing a set of sequences consisting of RNA or RNA-DNA hybrids, which can assemble into the designed construct. On the other end of the pipeline is an experimental component, which takes the produced sequences and uses them to initialize and characterize their proper assembly and then test the resulting RNA NPs for their function and delivery in cell culture and animal models. An important aspect of this pipeline is the feedback that constantly occurs between the computational and the experimental parts, which synergizes the refinement of both the algorithmic methodologies and the experimental protocols. The utility of this approach is depicted by the several examples described in this Account (nanocubes, nanorings, and RNA-DNA hybrids). Of particular interest, from the computational viewpoint, is that in most cases, first a three-dimensional representation of the assembly is produced, and only then are algorithms applied to generate the sequences that will assemble into the designated three-dimensional construct. This is opposite to the usual practice of predicting RNA structures from a given sequence, that is, the RNA folding problem. To be considered is the generation of sequences that upon assembly have the proper intra- or interstrand interactions (or both). Of particular interest from the experimental point of view is the determination and characterization of the proper thermodynamic, kinetic, functionality, and delivery protocols. Assembly of RNA NPs from individual single-stranded RNAs can be accomplished by one-pot techniques under the proper thermal and buffer conditions or, potentially more interestingly, by the use of various RNA polymerases that can promote the formation of RNA NPs cotransciptionally from specifically designed DNA templates. Also of importance is the delivery of the RNA NPs to the cells of interest in vitro or in vivo. Nonmodified RNAs rapidly degrade in blood serum and have difficulties crossing biological membranes due to their negative charge. These problems can be overcome by using, for example, polycationic lipid-based carriers. Our work involves the use of bolaamphiphiles, which are amphipathic compounds with positively charged hydrophilic head groups at each end connected by a hydrophobic chain. We have correlated results from molecular dynamics computations with various experiments to understand the characteristics of such delivery agents.


Assuntos
Simulação por Computador , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , RNA/química , Algoritmos , Animais , Técnicas de Química Sintética , DNA/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Conformação de Ácido Nucleico , RNA/síntese química , Dobramento de RNA , Interferência de RNA , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Riboswitch , Termodinâmica
16.
Methods ; 67(2): 256-65, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24189588

RESUMO

The fast-developing field of RNA nanotechnology requires the adoption and development of novel and faster computational approaches to modeling and characterization of RNA-based nano-objects. We report the first application of Elastic Network Modeling (ENM), a structure-based dynamics model, to RNA nanotechnology. With the use of an Anisotropic Network Model (ANM), a type of ENM, we characterize the dynamic behavior of non-compact, multi-stranded RNA-based nanocubes that can be used as nano-scale scaffolds carrying different functionalities. Modeling the nanocubes with our tool NanoTiler and exploring the dynamic characteristics of the models with ANM suggested relatively minor but important structural modifications that enhanced the assembly properties and thermodynamic stabilities. In silico and in vitro, we compared nanocubes having different numbers of base pairs per side, showing with both methods that the 10 bp-long helix design leads to more efficient assembly, as predicted computationally. We also explored the impact of different numbers of single-stranded nucleotide stretches at each of the cube corners and showed that cube flexibility simulations help explain the differences in the experimental assembly yields, as well as the measured nanomolecule sizes and melting temperatures. This original work paves the way for detailed computational analysis of the dynamic behavior of artificially designed multi-stranded RNA nanoparticles.


Assuntos
Nanoestruturas/química , RNA/química , Anisotropia , Simulação por Computador , Microscopia Crioeletrônica , Luz , Modelos Químicos , Modelos Moleculares , Nanoestruturas/ultraestrutura , Conformação de Ácido Nucleico , RNA/ultraestrutura , Espalhamento de Radiação
17.
Nano Lett ; 14(10): 5662-71, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25267559

RESUMO

Our recent advancements in RNA nanotechnology introduced novel nanoscaffolds (nanorings); however, the potential of their use for biomedical applications was never fully revealed. As presented here, besides functionalization with multiple different short interfering RNAs for combinatorial RNA interference (e.g., against multiple HIV-1 genes), nanorings also allow simultaneous embedment of assorted RNA aptamers, fluorescent dyes, proteins, as well as recently developed RNA-DNA hybrids aimed to conditionally activate multiple split functionalities inside cells.


Assuntos
Nanopartículas/química , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/uso terapêutico , Animais , Linhagem Celular Tumoral , Feminino , Terapia Genética , Infecções por HIV/terapia , Infecções por HIV/virologia , HIV-1/genética , Humanos , Camundongos Nus , Modelos Moleculares , Nanopartículas/ultraestrutura , Neoplasias/genética , Neoplasias/terapia , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética
18.
J Virol ; 87(22): 11987-2002, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23986599

RESUMO

The Pea enation mosaic virus (PEMV) 3' translational enhancer, known as the kissing-loop T-shaped structure (kl-TSS), binds to 40S subunits, 60S subunits, and 80S ribosomes, whereas the Turnip crinkle virus (TCV) TSS binds only to 60S subunits and 80S ribosomes. Using electrophoretic mobility gel shift assay (EMSA)-based competition assays, the kl-TSS was found to occupy a different site in the ribosome than the P-site-binding TCV TSS, suggesting that these two TSS employ different mechanisms for enhancing translation. The kl-TSS also engages in a stable, long-distance RNA-RNA kissing-loop interaction with a 12-bp 5'-coding-region hairpin that does not alter the structure of the kl-TSS as revealed by molecular dynamics simulations. Addition of the kl-TSS in trans to a luciferase reporter construct containing either wild-type or mutant 5' and 3' PEMV sequences suppressed translation, suggesting that the kl-TSS is required in cis to function, and both ribosome-binding and RNA interaction activities of the kl-TSS contributed to translational inhibition. Addition of the kl-TSS was more detrimental for translation than an adjacent eIF4E-binding 3' translational enhancer known as the PTE, suggesting that the PTE may support the ribosome-binding function of the kl-TSS. Results of in-line RNA structure probing, ribosome filter binding, and high-throughput selective 2'-hydroxyl acylation analyzed by primer extension (hSHAPE) of rRNAs within bound ribosomes suggest that kl-TSS binding to ribosomes and binding to the 5' hairpin are compatible activities. These results suggest a model whereby posttermination ribosomes/ribosomal subunits bind to the kl-TSS and are delivered to the 5' end of the genome via the associated RNA-RNA interaction, which enhances the rate of translation reinitiation.


Assuntos
Regiões 5' não Traduzidas/genética , Arabidopsis/metabolismo , Carmovirus/fisiologia , Elementos Facilitadores Genéticos/genética , Vírus do Mosaico/fisiologia , Biossíntese de Proteínas , RNA Viral/metabolismo , Ribossomos/metabolismo , Regiões 3' não Traduzidas/genética , Arabidopsis/genética , Sítios de Ligação , Ensaio de Desvio de Mobilidade Eletroforética , Fator de Iniciação 4E em Eucariotos/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Saccharomyces cerevisiae
19.
J Virol ; 86(18): 9828-42, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22761367

RESUMO

Many plant RNA viruses contain elements in their 3' untranslated regions (3' UTRs) that enhance translation. The PTE (Panicum mosaic virus-like translational enhancer) of Pea enation mosaic virus (PEMV) binds to eukaryotic initiation factor 4E (eIF4E), but how this affects translation from the 5' end is unknown. We have discovered a three-way branched element just upstream of the PEMV PTE that engages in a long-distance kissing-loop interaction with a coding sequence hairpin that is critical for the translation of a reporter construct and the accumulation of the viral genome in vivo. Loss of the long-distance interaction was more detrimental than elimination of the adjacent PTE, indicating that the RNA-RNA interaction supports additional translation functions besides relocating the PTE to the 5' end. The branched element is predicted by molecular modeling and molecular dynamics to form a T-shaped structure (TSS) similar to the ribosome-binding TSS of Turnip crinkle virus (TCV). The PEMV element binds to plant 80S ribosomes with a K(d) (dissociation constant) of 0.52 µM and to 60S subunits with a K(d) of 0.30 µM. Unlike the TCV TSS, the PEMV element also binds 40S subunits (K(d), 0.36 µM). Mutations in the element that suppressed translation reduced either ribosome binding or the RNA-RNA interaction, suggesting that ribosome binding is important for function. This novel, multifunctional element is designated a kl-TSS (kissing-loop T-shaped structure) to distinguish it from the TCV TSS. The kl-TSS has sequence and structural features conserved with the upper portion of most PTE-type elements, which, with the exception of the PEMV PTE, can engage in similar long-distance RNA-RNA interactions.


Assuntos
Elementos Facilitadores Genéticos , Vírus do Mosaico/genética , Vírus do Mosaico/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Sequência de Bases , Sítios de Ligação/genética , Carmovirus/genética , Carmovirus/metabolismo , Genoma Viral , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA Viral/química , Ribossomos/genética , Ribossomos/metabolismo
20.
Proc Natl Acad Sci U S A ; 107(4): 1385-90, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20080629

RESUMO

The 3(') untranslated region (3(') UTR) of turnip crinkle virus (TCV) genomic RNA contains a cap-independent translation element (CITE), which includes a ribosome-binding structural element (RBSE) that participates in recruitment of the large ribosomal subunit. In addition, a large symmetric loop in the RBSE plays a key role in coordinating the incompatible processes of viral translation and replication, which require enzyme progression in opposite directions on the viral template. To understand the structural basis for the large ribosomal subunit recruitment and the intricate interplay among different parts of the molecule, we determined the global structure of the 102-nt RBSE RNA using solution NMR and small-angle x-ray scattering. This RNA has many structural features that resemble those of a tRNA in solution. The hairpins H1 and H2, linked by a 7-nucleotide linker, form the upper part of RBSE and hairpin H3 is relatively independent from the rest of the structure and is accessible to interactions. This global structure provides insights into the three-dimensional layout for ribosome binding, which may serve as a structural basis for its involvement in recruitment of the large ribosomal subunit and the switch between viral translation and replication. The experimentally determined three-dimensional structure of a functional element in the 3(') UTR of an RNA from any organism has not been previously reported. The RBSE structure represents a prototype structure of a new class of RNA structural elements involved in viral translation/replication processes.


Assuntos
Regiões 3' não Traduzidas , Carmovirus/química , Carmovirus/metabolismo , Elementos Facilitadores Genéticos , Conformação de Ácido Nucleico , RNA Viral/química , Ribossomos/metabolismo , Sequência de Bases , Carmovirus/genética , Modelos Moleculares , Dados de Sequência Molecular , Biossíntese de Proteínas , RNA Viral/metabolismo , Proteínas Virais/biossíntese , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa