Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(4): 2389-2400, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31967798

RESUMO

Laser printers emit high levels of nanoparticles (PM0.1) during operation. Although it is well established that toners contain multiple engineered nanomaterials (ENMs), little is known about inhalation exposures to these nanoparticles and work practices in printing centers. In this report, we present a comprehensive inhalation exposure assessment of indoor microenvironments at six commercial printing centers in Singapore, the first such assessment outside of the United States, using real-time personal and stationary monitors, time-integrated instrumentation, and multiple analytical methods. Extensive presence of ENMs, including titanium dioxide, iron oxide, and silica, was detected in toners and in airborne particles collected from all six centers studied. We document high transient exposures to emitted nanoparticles (peaks of ∼500 000 particles/cm3, lung-deposited surface area of up to 220 µm2/cm3, and PM0.1 up to 16 µg/m3) with complex PM0.1 chemistry that included 40-60 wt % organic carbon, 10-15 wt % elemental carbon, and 14 wt % trace elements. We also record 271.6-474.9 pmol/mg of Environmental Protection Agency-priority polycyclic aromatic hydrocarbons. These findings highlight the potentially high occupational inhalation exposures to nanoparticles with complex compositions resulting from widespread usage of nano-enabled toners in the printing industry, as well as inadequate ENM-specific exposure control measures in these settings.


Assuntos
Nanopartículas , Exposição Ocupacional , Monitoramento Ambiental , Exposição por Inalação , Tamanho da Partícula , Impressão Tridimensional , Singapura , Estados Unidos
2.
Biotechnol J ; 10(1): 171-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25367700

RESUMO

The potential applications of nanomaterials in therapeutics are immense and to fully explore this potential, it is important to understand the interaction of nanoparticles with cellular components. To examine the interaction between nanoparticles and cell membrane receptors, this report describes the use of advanced fluorescence techniques to measure interactions between hydroxyapatite (HA) nanoparticles and epidermal growth factor receptors (EGFRs), as a model system. FITC-labelled HA nanoparticles and monomeric red fluorescent protein (mRFP)-conjugated EGFRs expressed in Chinese hamster ovary cells (CHO-K1) were generated and their interaction measured using acceptor photobleaching-fluorescence resonance energy transfer (AP-FRET) and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET). Results confirmed that hydroxyapatite nanoparticles not only interacted with EGFR but also attenuated downstream EGFR signalling, possibly by hindering normal dimerization of EGFR. Furthermore, the extent of signal attenuation suggested correlation with specific surface area of the nanoparticles, whereby greater specific surface area resulted in greater downstream signal attenuation. This novel demonstration establishes fluorescence techniques as a viable method to study nanoparticle interactions with proteins such as cell surface receptors. The approach described herein can be extended to study interactions between any fluorescently labelled nanoparticle-biomolecule pair.


Assuntos
Durapatita/química , Durapatita/metabolismo , Receptores ErbB/química , Receptores ErbB/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Nanopartículas/química , Animais , Western Blotting , Células CHO , Linhagem Celular Tumoral , Sobrevivência Celular , Cricetinae , Cricetulus , Durapatita/toxicidade , Humanos , Nanopartículas/toxicidade , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa