Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(3): 683-696.e18, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30929902

RESUMO

Microbiota and intestinal epithelium restrict pathogen growth by rapid nutrient consumption. We investigated how pathogens circumvent this obstacle to colonize the host. Utilizing enteropathogenic E. coli (EPEC), we show that host-attached bacteria obtain nutrients from infected host cell in a process we termed host nutrient extraction (HNE). We identified an inner-membrane protein complex, henceforth termed CORE, as necessary and sufficient for HNE. The CORE is a key component of the EPEC injectisome, however, here we show that it supports the formation of an alternative structure, composed of membranous nanotubes, protruding from the EPEC surface to directly contact the host. The injectisome and flagellum are evolutionarily related, both containing conserved COREs. Remarkably, CORE complexes of diverse ancestries, including distant flagellar COREs, could rescue HNE capacity of EPEC lacking its native CORE. Our results support the notion that HNE is a widespread virulence strategy, enabling pathogens to thrive in competitive niches.


Assuntos
Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/metabolismo , Nutrientes/metabolismo , Aminoácidos/metabolismo , Aderência Bacteriana/fisiologia , Escherichia coli Enteropatogênica/crescimento & desenvolvimento , Escherichia coli Enteropatogênica/metabolismo , Fluoresceínas/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência
2.
PLoS Pathog ; 13(7): e1006472, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28671993

RESUMO

Enteropathogenic Escherichia coli (EPEC), a common cause of infant diarrhea, is associated with high risk of mortality in developing countries. The primary niche of infecting EPEC is the apical surface of intestinal epithelial cells. EPEC employs a type three secretion system (TTSS) to inject the host cells with dozens of effector proteins, which facilitate attachment to these cells and successful colonization. Here we show that EPEC elicit strong NF-κB activation in infected host cells. Furthermore, the data indicate that active, pore-forming TTSS per se is necessary and sufficient for this NF-κB activation, regardless of any specific effector or protein translocation. Importantly, upon infection with wild type EPEC this NF-κB activation is antagonized by anti-NF-κB effectors, including NleB, NleC and NleE. Accordingly, this NF-κB activation is evident only in cells infected with EPEC mutants deleted of nleB, nleC, and nleE. The TTSS-dependent NF-κB activation involves a unique pathway, which is independent of TLRs and Nod1/2 and converges with other pathways at the level of TAK1 activation. Taken together, our results imply that epithelial cells have the capacity to sense the EPEC TTSS and activate NF-κB in response. Notably, EPEC antagonizes this capacity by delivering anti-NF-κB effectors into the infected cells.


Assuntos
Escherichia coli Enteropatogênica/metabolismo , Células Epiteliais/microbiologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , NF-kappa B/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Escherichia coli Enteropatogênica/genética , Células Epiteliais/metabolismo , Infecções por Escherichia coli/genética , Proteínas de Escherichia coli/genética , Interações Hospedeiro-Patógeno , Humanos , NF-kappa B/genética , Transdução de Sinais , Sistemas de Secreção Tipo III/genética
3.
mSystems ; 7(3): e0020222, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35477304

RESUMO

The cell envelope of Gram-negative bacteria is a complex structure, essential for bacterial survival and for resistance to many antibiotics. Channels that cross the bacterial envelope and the host cell membrane form secretion systems that are activated upon attachment to host, enabling bacteria to inject effector molecules into the host cell, required for bacterium-host interaction. The type III secretion system (T3SS) is critical for the virulence of several pathogenic bacteria, including enteropathogenic Escherichia coli (EPEC). EPEC T3SS activation is associated with repression of carbon storage regulator (CsrA), resulting in gene expression remodeling, which is known to affect EPEC central carbon metabolism and contributes to the adaptation to a cell-adherent lifestyle in a poorly understood manner. We reasoned that the changes in the bacterial envelope upon attachment to the host and the activation of a secretion system may involve a modification of the lipid composition of bacterial envelope. Accordingly, we performed a lipidomics analysis on mutant strains that simulate T3SS activation. We saw a shift in glycerophospholipid metabolism toward the formation of lysophospholipids, attributed to corresponding upregulation of the phospholipase gene pldA and the acyltransferase gene ygiH upon T3SS activation in EPEC. We also detected a shift from menaquinones and ubiquinones to undecaprenyl lipids, concomitant with abnormal synthesis of O antigen. The remodeling of lipid metabolism is mediated by CsrA and associated with increased bacterial cell size and zeta potential and a corresponding alteration in EPEC permeability to vancomycin, increasing the sensitivity of T3SS-activated strains and of adherent wild-type EPEC to the antibiotic. IMPORTANCE The characterization of EPEC membrane lipid metabolism upon attachment to the host is an important step toward a better understanding the shift of EPEC, a notable human pathogen, from a planktonic to adherent lifestyle. It may also apply to other pathogenic bacteria that use this secretion system. We predict that upon attachment to host cells, the lipid remodeling upon T3SS activation contributes to bacterial fitness and promotes host colonization, and we show that it is associated with increased cell permeability and higher sensitivity to vancomycin. To the best of our knowledge, this is the first demonstration of a bacterial lipid remodeling due to activation of a secretion system.


Assuntos
Escherichia coli Enteropatogênica , Proteínas de Escherichia coli , Humanos , Escherichia coli Enteropatogênica/genética , Sistemas de Secreção Tipo III/genética , Vancomicina/metabolismo , Proteínas de Escherichia coli/genética , Lipídeos , Proteínas Repressoras/metabolismo , Proteínas de Ligação a RNA/metabolismo
4.
Sci Adv ; 7(44): eabi8228, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34705501

RESUMO

Small RNAs (sRNAs) exert their regulation posttranscriptionally by base pairing with their target mRNAs, often in association with the RNA chaperone protein Hfq. Here, integrating RNA-seq­based technologies and bioinformatics, we deciphered the Hfq-mediated sRNA-target interactome of enteropathogenic Escherichia coli (EPEC). The emerging network comprises hundreds of sRNA-mRNA pairs, including mRNAs of virulence-associated genes interacting with known sRNAs encoded within the core genome, as well as with newly found sRNAs encoded within pathogenicity islands. Some of the sRNAs affect multiple virulence genes, suggesting they function as hubs of virulence control. We further analyzed one such sRNA hub, MgrR, and one of its targets identified here, the major virulence-associated chaperon, cesT. We show that MgrR adjusts the level of EPEC cytotoxicity via regulation of CesT expression. Our results reveal an elaborate sRNA-mRNA interactome controlling the pathogenicity of EPEC and reinforce a role for sRNAs in the control of pathogen-host interaction.

5.
mBio ; 10(5)2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530678

RESUMO

The transition from a planktonic lifestyle to a host-attached state is often critical for bacterial virulence. Upon attachment to host cells, enteropathogenic Escherichia coli (EPEC) employs a type III secretion system (T3SS) to inject into the host cells ∼20 effector proteins, including Tir. CesT, which is encoded from the same operon downstream of tir, is a Tir-bound chaperone that facilitates Tir translocation. Upon Tir translocation, the liberated CesT remains in the bacterial cytoplasm and antagonizes the posttranscriptional regulator CsrA, thus eliciting global regulation in the infecting pathogen. Importantly, tight control of the Tir/CesT ratio is vital, since an uncontrolled surge in free CesT levels may repress CsrA in an untimely manner, thus abrogating colonization. We investigated how fluctuations in Tir translation affect the regulation of this ratio. By creating mutations that cause the premature termination of Tir translation, we revealed that the untranslated tir mRNA becomes highly unstable, resulting in a rapid drop in cesT mRNA levels and, thus, CesT levels. This mechanism couples Tir and CesT levels to ensure a stable Tir/CesT ratio. Our results expose an additional level of regulation that enhances the efficacy of the initial interaction of EPEC with the host cell, providing a better understanding of the bacterial switch from the planktonic to the cell-adherent lifestyle.IMPORTANCE Host colonization by extracellular pathogens often entails the transition from a planktonic lifestyle to a host-attached state. Enteropathogenic E. coli (EPEC), a Gram-negative pathogen, attaches to the intestinal epithelium of the host and employs a type III secretion system (T3SS) to inject effector proteins into the cytoplasm of infected cells. The most abundant effector protein injected is Tir, whose translocation is dependent on the Tir-bound chaperon CesT. Upon Tir injection, the liberated CesT binds to and inhibits the posttranscriptional regulator CsrA, resulting in reprogramming of gene expression in the host-attached bacteria. Thus, adaptation to the host-attached state involves dynamic remodeling of EPEC gene expression, which is mediated by the relative levels of Tir and CesT. Fluctuating from the optimal Tir/CesT ratio results in a decrease in EPEC virulence. Here we elucidate a posttranscriptional circuit that prevents sharp variations from this ratio, thus improving host colonization.


Assuntos
Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/fisiologia , Proteínas de Escherichia coli/genética , Interações Hospedeiro-Patógeno , Sistemas de Secreção Tipo III/genética , Adaptação Fisiológica , Adesinas Bacterianas , Citoplasma/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Chaperonas Moleculares/genética , Mutação , Proteínas de Ligação a RNA/genética , Receptores de Superfície Celular/genética , Proteínas Repressoras/genética , Sistemas de Secreção Tipo III/metabolismo , Virulência
6.
Elife ; 62017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178445

RESUMO

When pathogens enter the host, sensing of environmental cues activates the expression of virulence genes. Opposite transition of pathogens from activating to non-activating conditions is poorly understood. Interestingly, variability in the expression of virulence genes upon infection enhances colonization. In order to systematically detect the role of phenotypic variability in enteropathogenic E. coli (EPEC), an important human pathogen, both in virulence activating and non-activating conditions, we employed the ScanLag methodology. The analysis revealed a bimodal growth rate. Mathematical modeling combined with experimental analysis showed that this bimodality is mediated by a hysteretic memory-switch that results in the stable co-existence of non-virulent and hyper-virulent subpopulations, even after many generations of growth in non-activating conditions. We identified the per operon as the key component of the hysteretic switch. This unique hysteretic memory switch may result in persistent infection and enhanced host-to-host spreading.


Assuntos
Epigênese Genética , Escherichia coli/crescimento & desenvolvimento , Fatores de Virulência/metabolismo , Escherichia coli/genética , Modelos Teóricos , Virulência , Fatores de Virulência/genética
7.
Science ; 355(6326): 735-739, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28209897

RESUMO

The mechanisms by which pathogens sense the host and respond by remodeling gene expression are poorly understood. Enteropathogenic Escherichia coli (EPEC), the cause of severe intestinal infection, employs a type III secretion system (T3SS) to inject effector proteins into intestinal epithelial cells. These effectors subvert host cell processes to promote bacterial colonization. We show that the T3SS also functions to sense the host cell and to trigger in response posttranscriptional remodeling of gene expression in the bacteria. We further show that upon effector injection, the effector-bound chaperone (CesT), which remains in the EPEC cytoplasm, antagonizes the posttranscriptional regulator CsrA. The CesT-CsrA interaction provokes reprogramming of expression of virulence and metabolic genes. This regulation is likely required for the pathogen's adaptation to life on the epithelium surface.


Assuntos
Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Sistemas de Secreção Tipo III/metabolismo , Regiões 5' não Traduzidas , Adaptação Fisiológica , Citoplasma/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Células HeLa , Humanos , Chaperonas Moleculares/isolamento & purificação , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Virulência , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa