Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(32)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35504253

RESUMO

In recent years, graphene-based van der Waals (vdW) heterostructures have come into prominence showcasing interesting charge transfer dynamics which is significant for optoelectronic applications. These novel structures are highly tunable depending on several factors such as the combination of the two-dimensional materials, the number of layers and band alignment exhibiting interfacial charge transfer dynamics. Here, we report on a novel graphene based 0D-2D vdW heterostructure between graphene and amine-functionalized graphene quantum dots (GQD) to investigate the interfacial charge transfer and doping possibilities. Using a combination ofab initiosimulations and Kelvin probe force microscopy (KPFM) measurements, we confirm that the incorporation of functional GQDs leads to a charge transfer induced p-type doping in graphene. A shift of the Dirac point by 0.05 eV with respect to the Fermi level (EF) in the graphene from the heterostructure was deduced from the calculated density of states. KPFM measurements revealed an increment in the surface potential of the GQD in the 0D-2D heterostructure by 29 mV with respect to graphene. Furthermore, we conducted power dependent Raman spectroscopy for both graphene and the heterostructure samples. An optical doping-induced gating effect resulted in a stiffening of theGband for electrons and holes in both samples (graphene and the heterostructure), suggesting a breakdown of the adiabatic Born-Oppenheimer approximation. Moreover, charge imbalance and renormalization of the electron-hole dispersion under the additional influence of the doped functional GQDs is pointing to an asymmetry in conduction and carrier mobility.

2.
Molecules ; 26(16)2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34443388

RESUMO

The purpose of this study was to examine the free radical scavenging and antioxidant activities of ellagic acid (EA) and ellagic acid peracetate (EAPA) by measuring their reactions with the radicals, 2,2-diphenyl-1-picrylhydrazyl and galvinoxyl using EPR spectroscopy. We have also evaluated the influence of EA and EAPA on the ROS production in L-6 myoblasts and rat liver microsomal lipid peroxidation catalyzed by NADPH. The results obtained clearly indicated that EA has tremendous ability to scavenge free radicals, even at concentration of 1 µM. Interestingly even in the absence of esterase, EAPA, the acetylated product of EA, was also found to be a good scavenger but at a relatively slower rate. Kinetic studies revealed that both EA and EAPA have ability to scavenge free radicals at the concentrations of 1 µM over extended periods of time. In cellular systems, EA and EAPA were found to have similar potentials for the inhibition of ROS production in L-6 myoblasts and NADPH-dependent catalyzed microsomal lipid peroxidation.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Ácido Elágico/análogos & derivados , Ácido Elágico/farmacologia , Sequestradores de Radicais Livres/farmacologia , Ácido Peracético/análogos & derivados , Animais , Cinética , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Ácido Peracético/farmacologia , Ratos
3.
J Phys Condens Matter ; 36(26)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38457842

RESUMO

Observations of superconductivity and charge density waves (CDW) in graphene have been elusive thus far due to weak electron-phonon coupling (EPC) interactions. Here, we report a unique observation of anomalous transport and multiple charge ordering phases at high temperatures (T1∼213K,T2∼325K) in a 0D-2D van der Waals (vdW) heterostructure comprising of single layer graphene (SLG) and functionalized (amine) graphene quantum dots (GQD). The presence of functionalized GQD contributed to charge transfer with shifting of the Dirac point ∼ 0.05 eV above the Fermi level (ab initio simulations) and carrier densityn∼-0.3×1012 cm-2confirming p-doping in SLG and two-fold increase in EPC interaction was achieved. Moreover, we elucidate the interplay between electron-electron and electron-phonon interactions to substantiate high temperature EPC driven charge ordering in the heterostructure through analyses of magnetotransport and weak anti-localization (WAL) framework. Our results provide impetus to investigate strongly correlated phenomena such as CDW and superconducting phase transitions in novel graphene based heterostructures.

4.
ACS Infect Dis ; 9(1): 9-22, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36512677

RESUMO

Screening of biomarkers is a powerful approach for providing a holistic view of the disease spectrum and facilitating the diagnosis and prognosis of the state of infectious diseases. Unaffected by the homeostasis mechanism in the human body, urine accommodates systemic changes and reflects the pathophysiological condition of an individual. Easy availability in large volumes and non-invasive sample collection have rendered urine an ideal source of biomarkers for various diseases. Infectious diseases may be communicable, and therefore early diagnosis and treatment are of immense importance. Current diagnostic approaches preclude the timely identification of clinical conditions and also lack portability. Point-of-care (POC) testing solutions have gained attention as alternative diagnostic measures due to their ability to provide rapid and on-site results. Lateral flow assays (LFAs) are the mainstay in POC device development and have attracted interest owing to their potential to provide instantaneous results in resource-limited settings. The discovery and optimization of a definitive biomarker can render POC testing an excellent platform, thus impacting unwarranted antibiotic administration and preventing the spread of infectious diseases. This Review summarizes the importance of urine as an emerging biological fluid in infectious disease research and diagnosis in clinical settings. We review the academic research related to LFAs. Further, we also describe commercial POC devices based on the identification of urinary biomarkers as diagnostic targets for infectious diseases. We also discuss the future use of LFAs in developing more effective POC tests for urinary biomarkers of various infections.


Assuntos
Doenças Transmissíveis , Humanos , Doenças Transmissíveis/diagnóstico , Testes Imediatos , Biomarcadores , Bioensaio , Diagnóstico Precoce
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa