Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(5): 1730-1750, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38415656

RESUMO

The recognition of peptides bound to class I major histocompatibility complex (MHC-I) receptors by T-cell receptors (TCRs) is a determinant of triggering the adaptive immune response. While the exact molecular features that drive the TCR recognition are still unknown, studies have suggested that the geometry of the joint peptide-MHC (pMHC) structure plays an important role. As such, there is a definite need for methods and tools that accurately predict the structure of the peptide bound to the MHC-I receptor. In the past few years, many pMHC structural modeling tools have emerged that provide high-quality modeled structures in the general case. However, there are numerous instances of non-canonical cases in the immunopeptidome that the majority of pMHC modeling tools do not attend to, most notably, peptides that exhibit non-standard amino acids and post-translational modifications (PTMs) or peptides that assume non-canonical geometries in the MHC binding cleft. Such chemical and structural properties have been shown to be present in neoantigens; therefore, accurate structural modeling of these instances can be vital for cancer immunotherapy. To this end, we have developed APE-Gen2.0, a tool that improves upon its predecessor and other pMHC modeling tools, both in terms of modeling accuracy and the available modeling range of non-canonical peptide cases. Some of the improvements include (i) the ability to model peptides that have different types of PTMs such as phosphorylation, nitration, and citrullination; (ii) a new and improved anchor identification routine in order to identify and model peptides that exhibit a non-canonical anchor conformation; and (iii) a web server that provides a platform for easy and accessible pMHC modeling. We further show that structures predicted by APE-Gen2.0 can be used to assess the effects that PTMs have in binding affinity in a more accurate manner than just using solely the sequence of the peptide. APE-Gen2.0 is freely available at https://apegen.kavrakilab.org.


Assuntos
Hominidae , Peptídeos , Animais , Peptídeos/química , Complexo Principal de Histocompatibilidade , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Processamento de Proteína Pós-Traducional , Hominidae/metabolismo , Ligação Proteica
2.
iScience ; 27(1): 108613, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38188519

RESUMO

Peptide-HLA (pHLA) binding prediction is essential in screening peptide candidates for personalized peptide vaccines. Machine learning (ML) pHLA binding prediction tools are trained on vast amounts of data and are effective in screening peptide candidates. Most ML models report the ability to generalize to HLA alleles unseen during training ("pan-allele" models). However, the use of datasets with imbalanced allele content raises concerns about biased model performance. First, we examine the data bias of two ML-based pan-allele pHLA binding predictors. We find that the pHLA datasets overrepresent alleles from geographic populations of high-income countries. Second, we show that the identified data bias is perpetuated within ML models, leading to algorithmic bias and subpar performance for alleles expressed in low-income geographic populations. We draw attention to the potential therapeutic consequences of this bias, and we challenge the use of the term "pan-allele" to describe models trained with currently available public datasets.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38577265

RESUMO

The cellular immune response comprises several processes, with the most notable ones being the binding of the peptide to the Major Histocompability Complex (MHC), the peptide-MHC (pMHC) presentation to the surface of the cell, and the recognition of the pMHC by the T-Cell Receptor. Identifying the most potent peptide targets for MHC binding, presentation and T-cell recognition is vital for developing peptide-based vaccines and T-cell-based immunotherapies. Data-driven tools that predict each of these steps have been developed, and the availability of mass spectrometry (MS) datasets has facilitated the development of accurate Machine Learning (ML) methods for class-I pMHC binding prediction. However, the accuracy of ML-based tools for pMHC kinetic stability prediction and peptide immunogenicity prediction is uncertain, as stability and immunogenicity datasets are not abundant. Here, we use transfer learning techniques to improve stability and immunogenicity predictions, by taking advantage of a large number of binding affinity and MS datasets. The resulting models, TLStab and TLImm, exhibit comparable or better performance than state-of-the-art approaches on different stability and immunogenicity test sets respectively. Our approach demonstrates the promise of learning from the task of peptide binding to improve predictions on downstream tasks. The source code of TLStab and TLImm is publicly available at https://github.com/KavrakiLab/TL-MHC.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa