RESUMO
Efficient energy transfer from electromagnetic waves to ions has been demanded to control laboratory plasmas for various applications and could be useful to understand the nature of space and astrophysical plasmas. However, there exists the severe unsolved problem that most of the wave energy is converted quickly to electrons but not to ions. Here, an energy-to-ion conversion process in overdense plasmas associated with whistler waves is investigated by numerical simulations and a theoretical model. Whistler waves propagating along a magnetic field in space and laboratories often form standing waves by the collision of counter-propagating waves or through the reflection. We find that ions in standing whistler waves acquire a large amount of energy directly from the waves over a short time scale comparable to the wave oscillation period. The thermalized ion temperature increases in proportion to the square of the wave amplitude and becomes much higher than the electron temperature in a wide range of wave-plasma conditions. This efficient ion-heating mechanism applies to various plasma phenomena in space physics and fusion energy sciences.
RESUMO
Laser-driven ion acceleration is often analyzed assuming that ionization reaches a steady state early in the interaction of the laser pulse with the target. This assumption breaks down for materials of high atomic number for which the ionization occurs concurrently with the acceleration process. Using particle-in-cell simulations, we have examined acceleration and simultaneous field ionization of copper ions in ultra-thin targets (20-150 nm thick) irradiated by a laser pulse with intensity 1 × 1021 W/cm2. At this intensity, the laser pulse drives strong electric fields at the rear side of the target that can ionize Cu to charge states with valence L-shell or full K-shell. The highly-charged ions are produced only in a very localized region due to a significant gap between the M- and L-shells' ionization potentials and can be accelerated by strong, forward-directed sections of the field. Such an "ionization injection" leads to well-pronounced bunches of energetic, highly-charged ions. We also find that for the thinnest target (20 nm) a push by the laser further increases the ion energy gain. Thus, the field ionization, concurrent with the acceleration, offers a promising mechanism for the production of energetic, high-charge ion bunches.