Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Kidney Blood Press Res ; 43(5): 1409-1424, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30212831

RESUMO

BACKGROUND/AIMS: Hyperphosphatemia is a serious complication of late-stage chronic kidney disease (CKD). Intestinal inorganic phosphate (Pi) handling plays an important role in Pi homeostasis in CKD. We investigated whether intestinal alkaline phosphatase 3 (Akp3), the enzyme that hydrolyzes dietary Pi compounds, is a target for the treatment of hyperphosphatemia in CKD. METHODS: We investigated Pi homeostasis in Akp3 knockout mice (Akp3-/-). We also studied the progression of renal failure in an Akp3-/- mouse adenine treated renal failure model. Plasma, fecal, and urinary Pi and Ca concentration were measured with commercially available kit, and plasma fibroblast growth factor 23, parathyroid hormone, and 1,25(OH)2D3 concentration were measured with ELISA. Brush border membrane vesicles were prepared from mouse intestine using the Ca2+ precipitation method and used for Pi transport activity and alkaline phosphatase activity. In vivo intestinal Pi absorption was measured with oral 32P administration. RESULTS: Akp3-/- mice exhibited reduced intestinal type II sodium-dependent Pi transporter (Npt2b) protein levels and Na-dependent Pi co-transport activity. In addition, plasma active vitamin D levels were significantly increased in Akp3-/- mice compared with wild-type animals. In the adenine-induced renal failure model, Akp3 gene deletion suppressed hyperphosphatemia. CONCLUSION: The present findings indicate that intestinal Akp3 deletion affects Na+-dependent Pi transport in the small intestine. In the adenine-induced renal failure model, Akp3 is predicted to be a factor contributing to suppression of the plasma Pi concentration.


Assuntos
Fosfatase Alcalina/fisiologia , Homeostase , Fosfatos/metabolismo , Insuficiência Renal/metabolismo , Fosfatase Alcalina/genética , Animais , Transporte Biológico , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Knockout , Fosfatos/sangue , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo
2.
J Clin Biochem Nutr ; 62(1): 3-10, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29362517

RESUMO

Reactive oxygen species and their reaction products can damage DNA to form mutagenic lesions. Among the reactive species, lipid peroxidation-derived aldehydes react with nucleobases and form bulky exocyclic adducts. Many types of aldehyde-derived DNA adducts have been characterized, identified and detected in vitro and in vivo, whereas relative quantitative and pathophysiological contributions of each adduct still remain unclear. In recent years, an abundant class of DNA adducts derived from 4-oxo-2-alkenals have been identified, in addition to classic aldehyde-derived adducts. The presence of 4-oxo-2-alkenal-derived DNA adducts associated with age-related diseases has been revealed in rodents and humans. In vitro studies have demonstrated that 4-oxo-2-alkenals, as compared with other classes of lipid peroxidation-derived aldehydes, are highly reactive with nucleobases. It has been generally recognized that 4-oxo-2-alkenals are generated through oxidative degradation of the corresponding 4-hydroperoxy-2-alkenals, homolytic degradation products of polyunsaturated fatty acid hydroperoxides. Our recent results have also shown an alternative pathway for the formation of 4-oxo-2-alkenals, in which 2-alkenals could undergo the metal-catalyzed autoxidation resulting in the formation of the corresponding 4-oxo-2-alkenals. This review summarizes the basis of the formation of lipid peroxidation-derived genotoxic aldehydes and their covalent adduction to nucleobases, especially focusing on the abundance of 4-oxo-2-alkenal-derived DNA adducts.

3.
Biosci Biotechnol Biochem ; 81(10): 1948-1955, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28891395

RESUMO

Atherosclerosis is one of the diseases related to metabolic syndrome which is caused by obesity. Previous reports have shown that green tea and its components have anti-obesity effect. We examined whether catechins and caffeine can prevent the development of atherosclerosis by oral administration, singly or in combination to the atherosclerosis model mice. Results demonstrated that the number of atherosclerotic regions in the aorta was significantly reduced by the combined treatment, and the atherosclerotic area was also improved. Serum HDL-C increased by caffeine single treatment, but no effect on the TG and TC by any treatments. Moreover, ECG illuviated to atheromatous lesions in aorta and the illuviation was enhanced by caffeine. The mRNA expression levels of LOX-1 and TNF-α showed a tendency to suppress by the combined treatment. These results indicated that the combined administration of catechins and caffeine has the inhibitory effect on the development of atherosclerosis in mice.


Assuntos
Aterosclerose/prevenção & controle , Cafeína/farmacologia , Catequina/farmacologia , Animais , Aorta/efeitos dos fármacos , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/metabolismo , Peso Corporal/efeitos dos fármacos , Interações Medicamentosas , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Camundongos , Camundongos Endogâmicos C57BL , Receptores Depuradores Classe E/genética , Fator de Necrose Tumoral alfa/genética
4.
Am J Physiol Endocrinol Metab ; 310(7): E526-38, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26786774

RESUMO

Recent epidemiological and animal studies have suggested that excess intake of phosphate (Pi) is a risk factor for the progression of chronic kidney disease and its cardiovascular complications. However, little is known about the impact of dietary high Pi intake on the development of metabolic disorders such as obesity and type 2 diabetes. In this study, we investigated the effects of dietary Pi on glucose and lipid metabolism in healthy rats. Male 8-wk-old Sprague-Dawley rats were divided into three groups and given experimental diets containing varying amounts of Pi, i.e., 0.2 [low Pi(LP)], 0.6 [control Pi(CP)], and 1.2% [high Pi(HP)]. After 4 wk, the HP group showed lower visceral fat accumulation compared with other groups, accompanied by a low respiratory exchange ratio (V̇CO2/V̇O2) without alteration of locomotive activity. The HP group had lower levels of plasma insulin and nonesterified fatty acids. In addition, the HP group also showed suppressed expression of hepatic lipogenic genes, including sterol regulatory element-binding protein-1c, fatty acid synthase, and acetyl-CoA carboxylase, whereas there was no difference in hepatic fat oxidation among the groups. On the other hand, uncoupling protein (UCP) 1 and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression were significantly increased in the brown adipose tissue (BAT) of the HP group. Our data demonstrated that a high-Pi diet can negatively regulate lipid synthesis in the liver and increase mRNA expression related to lipid oxidation and UCP1 in BAT, thereby preventing visceral fat accumulation. Thus, dietary Pi is a novel metabolic regulator.


Assuntos
Comportamento Animal/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Gordura Intra-Abdominal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Fosfatos/farmacologia , Compostos de Potássio/farmacologia , Troca Gasosa Pulmonar/efeitos dos fármacos , Acetil-CoA Carboxilase/efeitos dos fármacos , Acetil-CoA Carboxilase/genética , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Glicemia/metabolismo , Ácido Graxo Sintase Tipo I/efeitos dos fármacos , Ácido Graxo Sintase Tipo I/genética , Ácidos Graxos não Esterificados/sangue , Insulina/sangue , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/genética , Lipogênese/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Proteínas Mitocondriais/efeitos dos fármacos , Proteínas Mitocondriais/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Sprague-Dawley , Proteína de Ligação a Elemento Regulador de Esterol 1/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/genética , Proteína Desacopladora 1
5.
Biosci Biotechnol Biochem ; 80(10): 2007-13, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27281652

RESUMO

Lipid peroxidation products react with cellular molecules, such as DNA bases, to form covalent adducts, which are associated with aging and disease processes. Since lipid peroxidation is a complex process and occurs in multiple stages, there might be yet unknown reaction pathways. Here, we analyzed comprehensively 2'-deoxyguanosine (dG) adducts with oxidized arachidonic acid using liquid chromatography-tandem mass spectrometry and found the formation of 7-(2-oxo-hexyl)-etheno-dG as one of the major unidentified adducts. The formation of this adduct was reproduced in the reaction of dG with 2-octenal and predominantly with 4-oxo-2-octenal (OOE). We also found that other 2-alkenals (with five or more carbons) generate corresponding 4-oxo-2-alkenal-type adducts. Importantly, it was found that transition metals enhanced the oxidation of C4-position of 2-octenal, leading to the formation of OOE-dG adduct. These findings demonstrated a new pathway for the formation of 4-oxo-2-alkenals during lipid peroxidation and might provide a mechanism for metal-catalyzed genotoxicity.


Assuntos
Aldeídos/química , Ácido Araquidônico/química , Cobre/química , Ferro/química , Peroxidação de Lipídeos , Mutagênicos/química , Aldeídos/metabolismo , Animais , Ácido Araquidônico/metabolismo , Catálise , Bovinos , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Mutagênicos/metabolismo , Oxirredução
6.
J Biol Chem ; 288(19): 13204-14, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23543734

RESUMO

BACKGROUND: Advanced glycation end products (AGEs) can act as neoantigens to trigger immune responses. RESULTS: Natural IgM antibodies against AGEs recognize multiple molecules, including DNA and chemically modified proteins. CONCLUSION: There is a close relationship between the formation of AGEs and innate immune responses. SIGNIFICANCE: Our findings highlight AGEs and related modified proteins as a source of multispecific natural antibodies Advanced glycation end products (AGEs) are a heterogeneous and complex group of compounds that are formed when reducing sugars, such as dehydroascorbic acid, react in a nonenzymatic way with amino acids in proteins and other macromolecules. AGEs are prevalent in the diabetic vasculature and contribute to the development of atherosclerosis. The presence and accumulation of AGEs in many different cell types affect the extracellular and intracellular structure and function. In the present study, we studied the immune response to the dehydroascorbic acid-derived AGEs and provide multiple lines of evidence suggesting that the AGEs could be an endogenous source of innate epitopes recognized by natural IgM antibodies. Prominent IgM titers to the AGEs were detected in the sera of normal mice and were significantly accelerated by the immunization with the AGEs. Patients with systemic lupus erythematosus (SLE), a potentially fatal systemic autoimmune disease characterized by the increased production of autoantibodies, showed significantly higher serum levels of the IgM titer against the AGEs than healthy individuals. A progressive increase in the IgM response against the AGEs was also observed in the SLE-prone mice. Strikingly, a subset of monoclonal antibodies, showing a specificity toward the AGEs, prepared from normal mice immunized with the AGEs and from the SLE mice cross-reacted with the double-stranded DNA. Moreover, they also cross-reacted with several other modified proteins, including the acetylated proteins, suggesting that the multiple specificity of the antibodies might be ascribed, at least in part, to the increased electronegative potential of the proteins. These findings suggest that the protein modification by the endogenous carbonyl compounds, generating electronegative proteins, could be a source of multispecific natural antibodies.


Assuntos
Anticorpos Monoclonais Murinos/imunologia , Especificidade de Anticorpos , Antígenos/imunologia , Produtos Finais de Glicação Avançada/imunologia , Imunoglobulina M/imunologia , Sequência de Aminoácidos , Animais , Antígenos/química , Ácido Desidroascórbico/metabolismo , Feminino , Produtos Finais de Glicação Avançada/química , Humanos , Imunidade Inata , Imunoglobulina M/química , Ponto Isoelétrico , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos MRL lpr , Dados de Sequência Molecular , Análise de Sequência de Proteína
7.
Arch Biochem Biophys ; 557: 11-7, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24893148

RESUMO

In recent years, many papers have suggested that dietary flavonoids may exert beneficial effects in the brain tissue for the protection of neurons against oxidative stress and inflammation. However, the bioavailability of flavonoids across the blood-brain barrier and the localization in the brain remain controversial. Thus, we examined the localization of quercetin-3-O-glucuronide (Q3GA), a major phase-II metabolite of quercetin, in the human brain tissues with or without cerebral infarction by immunohistochemical staining using anti-Q3GA antibody. A significant immunoreactivity was observed in the epithelial cells of the choroid plexus, which constitute the structural basis of the blood-cerebrospinal fluid (CSF) barrier, and in the foamy macrophages of recent infarcts. The cellular accumulation of Q3GA was also reproduced in vitro in macrophage-like RAW264, microglial MG6, and brain capillary endothelial RBEC1. It is of interest that a common feature of these cell lines is the deconjugation of Q3GA, resulting in the cellular accumulation of non-conjugated quercetin and the methylated forms. We then examined the anti-inflammatory activity of Q3GA and the deconjugated forms in the lipopolysaccharide-stimulated macrophage cells and revealed that the deconjugated forms (quercetin and a methylated form isorhamnetin), but not Q3GA itself, exhibited inhibitory effects on the inflammatory responses through attenuation of the c-Jun N-terminal kinase pathway. These results suggested that a quercetin glucuronide can pass through the blood-brain barrier, perhaps the CSF barrier, accumulate in specific types of cells, such as macrophages, and act as anti-inflammatory agents in the brain through deconjugation into the bioactive non-conjugated forms.


Assuntos
Encéfalo/metabolismo , Quercetina/análogos & derivados , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacocinética , Barreira Hematoencefálica , Western Blotting , Linhagem Celular , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Quercetina/metabolismo , Quercetina/farmacocinética
8.
J Clin Biochem Nutr ; 54(3): 145-50, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24895476

RESUMO

Epidemiological and experimental studies suggest that the consumption of flavonoid-rich diets decreases the risk of various chronic diseases such as cardiovascular diseases. Although studies on the bioavailability of flavonoids have been well-characterized, the tissue and cellular localizations underlying their biological mechanisms are largely unknown. The development and application of novel monoclonal antibodies revealed that macrophages could be the major target of dietary flavonoids in vivo. Using macrophage-like cell lines in vitro, we examined the molecular basis of the interaction between the macrophages and flavonoids, especially the glucuronide metabolites. We have found that extracellular ß-glucuronidase secreted from macrophages is essential for the bioactivation of the glucuronide conjugates into the aglycone, and that the enzymatic activity, which requires an acidic pH, is promoted by the increased secretion of lactate in response to the mitochondrial dysfunction. This review describes our recent findings indicating the molecular mechanisms responsible for the anti-inflammatory activity of dietary flavonoids within the inflammation sites. We propose that the extracellular activity of ß-glucuronidase associated with the status of the mitochondrial function in the target cells might be important biomarkers for the specific sites where the glucuronides of dietary flavonoids can act as anti-atherosclerotic and anti-inflammatory agents in vivo.

9.
Chem Res Toxicol ; 25(7): 1384-92, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22716039

RESUMO

Acrolein, a ubiquitous pollutant in the environment, is endogenously formed through oxidation reactions and is believed to be involved in cytopathological effects observed during oxidative stress. Acrolein exerts these effects because of its facile reactivity with biological materials, particularly proteins. In the present study, we quantitatively analyzed the acrolein-specific adducts generated during lipid peroxidation-modification of proteins and identified the acrolein adduct most abundantly generated in the in vitro oxidized low-density lipoproteins (LDL). Taking advantage of the fact that the acrolein-lysine adducts, N(ε)-(3-formyl-3,4-dehydropiperidino)lysine (FDP-lysine) and N(ε)-(3-methylpyridinium)lysine (MP-lysine), have stable core structures resistant to the acid hydrolysis condition of proteins, we examined the formation of these adducts in proteins using high performance liquid chromatography with online electrospray ionization tandem mass spectrometry. However, only MP-lysine was detected as a minor product in the iron/ascorbate-mediated oxidation of polyunsaturated fatty acids in the presence of proteins and in the oxidized low-density lipoproteins (LDL). However, using a reductive amination-based pyridylamination method, we analyzed the acrolein-specific adducts with a carbonyl functionality and found that acrolein modification of the protein produced a number of carbonylated amino acids, including an acrolein-histidine adduct. On the basis of the chemical and spectroscopic evidence, this adduct was identified as N(τ)-(3-propanal)histidine. More notably, N(τ)-(3-propanal)histidine appeared to be one of the major adducts generated in the oxidized LDL. These data suggest that acrolein generated during lipid peroxidation may primarily react with histidine residues of proteins to form N(τ)-(3-propanal)histidine.


Assuntos
Acroleína/química , Aldeídos/análise , Poluentes Ambientais/química , Histidina/análogos & derivados , Proteínas/química , Acroleína/metabolismo , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Poluentes Ambientais/metabolismo , Histidina/análise , Marcação por Isótopo , Peroxidação de Lipídeos , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Lisina/análogos & derivados , Lisina/análise , Oxirredução , Proteínas/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Espectrometria de Massas por Ionização por Electrospray
10.
Chem Res Toxicol ; 25(7): 1393-401, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22716076

RESUMO

Acrolein shows a facile reactivity with the ε-amino group of lysine to form N(ε)-(3-formyl-3,4-dehydropiperidino)lysine (FDP-lysine) as the major product. In addition, FDP-lysine generated in the acrolein-modified protein could function as an electrophile, reacting with thiol compounds, to form an irreversible thioether adduct. In the present study, to establish the utility of this irreversible conjugate, we attempted to use it as an immunogen to raise a monoclonal antibody (mAb), which specifically recognized protein-bound thiol compounds. Using the glutathione (GSH) conjugate of the acrolein-modified protein as an immunogen, we raised the mAb 2C4, which cross-reacted with the GSH conjugate of acrolein-modified proteins. Specificity studies revealed that mAb 2C4 recognized both the GSH conjugate of an acrolein-lysine adduct, FDP-lysine, and oxidized GSH (GSSG). In addition, mAb 2C4 cross-reacted not only with the GSH conjugates of the acrolein-modified protein but also with the GSH-treated, oxidized protein (S-glutathiolated protein), suggesting that the antibody significantly recognized the protein-bound GSH as the epitope. An immunohistochemical analysis of the atherosclerotic lesions from the human aorta showed that immunoreactive materials with mAb 2C4 were indeed present in the macrophage-derived foam cells and migrating smooth muscles. In addition, using mAb 2C4, we analyzed the GSH-treated, oxidized low-density lipoproteins by agarose gel electrophoresis under reducing or nonreducing conditions followed by immunoblot analysis and found that the majority of the GSH was irreversibly incorporated into the proteins. The results of this study not only showed the utility of the antibody raised against the GSH conjugate of the acrolein-modified proteins but also suggested that the irreversible binding of GSH and other redox molecules to the oxidized LDL might represent the process common to the modification of LDL during atherogenesis.


Assuntos
Acroleína/química , Anticorpos Monoclonais/imunologia , Glutationa/metabolismo , Proteínas/metabolismo , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Humanos , Imuno-Histoquímica , Lipoproteínas LDL/química , Lipoproteínas LDL/imunologia , Lipoproteínas LDL/metabolismo , Lisina/análogos & derivados , Lisina/química , Oxirredução , Ligação Proteica , Proteínas/química , Proteínas/imunologia
11.
J Pharmacol Sci ; 115(4): 466-70, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21436601

RESUMO

Quercetin, a member of the bioflavonoids family, has been proposed to have anti-atherogenic, anti-inflammatory, and anti-hypertensive properties leading to the beneficial effects against cardiovascular diseases. It was recently demonstrated that quercetin 3-O-ß-D-glucuronide (Q3GA) is one of the major quercetin conjugates in human plasma, in which the aglycone could not be detected. Although most of the in vitro pharmacological studies have been carried out using only the quercetin aglycone form, experiments using Q3GA would be important to discover the preventive mechanisms of cardiovascular diseases by quercetin in vivo. Therefore we examined the effects of the chemically synthesized Q3GA, as an in vivo form, on vascular smooth muscle cell (VSMC) disorders related to the progression of arteriosclerosis. Platelet-derived growth factor-induced cell migration and proliferation were inhibited by Q3GA in VSMCs. Q3GA attenuated angiotensin II-induced VSMC hypertrophy via its inhibitory effect on JNK and the AP-1 signaling pathway. Q3GA scavenged 1,1-diphenyl-2-picrylhydrazyl radical measured by the electron paramagnetic resonance method. In addition, immunohistochemical studies with monoclonal antibody 14A2 targeting the Q3GA demonstrated that the positive staining specifically accumulates in human atherosclerotic lesions, but not in the normal aorta. These findings suggest Q3GA would be an active metabolite of quercetin in plasma and may have preventative effects on arteriosclerosis relevant to VSMC disorders.


Assuntos
Antioxidantes/uso terapêutico , Arteriosclerose/tratamento farmacológico , Quercetina/análogos & derivados , Quercetina/farmacocinética , Animais , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Arteriosclerose/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Alimentos Orgânicos , Radicais Livres/metabolismo , Humanos , Hipertrofia/tratamento farmacológico , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Quercetina/farmacologia , Quercetina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
12.
Biosci Biotechnol Biochem ; 75(4): 609-17, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21512255

RESUMO

It has been suggested that polyphenol-rich diets decrease the risk of cardiovascular diseases. Although studies of the bioavailability of polyphenols, particularly their absorption and metabolism, have been reported recently, the tissue and cellular distributions underlying their biological mechanisms remain unknown. It is difficult to evaluate the specific localization of tissue and/or cellular polyphenols, because the method is limited to chromatography. To overcome these difficulties, we have developed anti-polyphenol antibodies to characterize immunohistochemically the localization of polyphenols and their metabolites in vivo. Two novel monoclonal antibodies were raised against quercetin and tea catechins, which represent flavonoid-type polyphenols distributed in foods and beverages, and are expected to exhibit anti-oxidative and anti-inflammatory activities in vivo. Using these antibodies, we identified activated macrophages as a specific target of these flavonoids during the development of atherosclerotic lesions. This review describes recent findings on the molecular actions of flavonoids that underly their anti-atherosclerotic activity in vivo.


Assuntos
Aorta/metabolismo , Aterosclerose/tratamento farmacológico , Flavonoides/metabolismo , Flavonoides/farmacologia , Alimentos , Imunoquímica/métodos , Macrófagos/metabolismo , Fenóis/metabolismo , Fenóis/farmacologia , Animais , Aorta/efeitos dos fármacos , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Flavonoides/farmacocinética , Flavonoides/uso terapêutico , Humanos , Macrófagos/efeitos dos fármacos , Fenóis/farmacocinética , Fenóis/uso terapêutico , Polifenóis
13.
Chem Res Toxicol ; 22(3): 536-42, 2009 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-19216492

RESUMO

We investigated the reactivity of allyl isothiocyanate (AITC) with amino groups under physiological conditions. First, the chemical reaction of AITC with bovine serum albumin (BSA) was investigated. When BSA was incubated with AITC in a phosphate buffer (pH 7.4), the loss of Lys residues was observed. Second, the Lys residue N(alpha)-benzoyl-glycyl-L-lysine (BGK) was reacted with AITC in the buffer, and a novel peak was detected using high performance liquid chromatography (HPLC). The peak was purified and identified as AITC-modified BGK with a N(epsilon)-thiocarbamoyl linkage. However, a thiol residue is known to be a predominant target of an isothiocyanate (ITC). Although AITC may react with a thiol moiety in vivo, a thiocarbamoyl linkage between ITC and thiol is unstable, and an AITC molecule may be regenerated. To prove the plausible transformation of ITC from thiol to amine, synthetic AITC-conjugated N(alpha)-acetyl-L-cysteine (NAC) was incubated with BGK at 37 degrees C in physiological buffer, and the generation of AITC-Lys was analyzed. The loss of the AITC-NAC adduct corresponded to the formation of the AITC-BGK adduct. Furthermore, using a novel monoclonal antibody (A4C7mAb) specific for AITC-Lys, we found that the AITC-Lys residue was generated from the reaction between AITC-NAC and BSA. Although AITC preferentially reacts with thiol rather than with Lys, AITC can be liberated from thiols and can then react with amino groups. The ITC-Lys adduct may be a useful marker for ITC target molecules.


Assuntos
Aminas/química , Isotiocianatos/química , Lisina/química , Compostos de Sulfidrila/química , Aminas/metabolismo , Cisteína/química , Isotiocianatos/metabolismo , Modelos Químicos , Soroalbumina Bovina/química
14.
J Bone Miner Metab ; 27(6): 673-81, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19495926

RESUMO

Quercetin is a major dietary flavonoid found in onions and other vegetables, and potentially has beneficial effects on disease prevention. In the present study, we demonstrate for the first time the effects of dietary quercetin on bone loss and uterine weight loss by ovariectomy in vivo. Female mice were ovariectomized (OVX) and were randomly allocated to 3 groups: a control diet or a diet with 0.25% (LQ) or 2.5% quercetin (HQ). After 4 weeks, dietary quercetin had no effects on uterine weight in OVX mice, but bone mineral density of the lumbar spine L4 and femur measured by peripheral quantitative computed tomography (pQCT) was higher in both the sham and the HQ groups than in the OVX group. Histomorphometric analysis showed that the HQ group restored bone volume (BV/TV) completely in distal femoral cancellous bone, but did not reduce the osteoclast surface area and osteoclast number when compared with the OVX group. In in-vitro experiments using mouse monocyte/macrophage cell line RAW264.7 cells, however, quercetin and its conjugate, quercetin-3-O-beta-D: -glucuronide dose-dependently inhibited the receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclast differentiation, and the RANKL-stimulated expression of osteoclast related genes was also inhibited by quercetin. The luciferase reporter assay showed that quercetin did not appear to have estrogenic activity through estrogen receptors. These results suggest that dietary quercetin inhibits bone loss without effect on the uterus in OVX mice and does not act as a potent inhibitor of osteoclastogenesis or as a selective estrogen receptor modulator in vivo.


Assuntos
Ovariectomia/métodos , Quercetina/farmacologia , Útero/efeitos dos fármacos , Animais , Peso Corporal , Densidade Óssea , Osso e Ossos/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Flavonoides/metabolismo , Células HeLa , Humanos , Vértebras Lombares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Quercetina/análogos & derivados , Ligante RANK/metabolismo , Fatores de Tempo , Tomografia Computadorizada por Raios X/métodos
15.
Biosci Biotechnol Biochem ; 73(3): 517-23, 2009 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-19270373

RESUMO

The bioavailability of polyphenols in human and rodents has been discussed regarding their biological activity. We found different metabolite profiles of quercetin in rat plasma between two administration procedures. A single intragastric administration (50 mg/kg) resulted in the appearance of a variety of metabolites in the plasma, whereas only a major fraction was detected by free access (1% quercetin). The methylated/non-methylated metabolites ratio was much higher in the free access group. Mass spectrometric analyses showed that the fraction from free access contained highly conjugated quercetin metabolites such as sulfo-glucuronides of quercetin and methylquercetin. The metabolite profile of human plasma after an intake of onion was similar to that with intragastric administration in rats. In vitro oxidation of human low-density lipoprotein showed that methylation of the catechol moiety of quercetin significantly attenuated the antioxidative activity. These results might provide information about the bioavailability of quercetin when conducting animal experiments.


Assuntos
Quercetina/administração & dosagem , Quercetina/sangue , Animais , Antioxidantes/administração & dosagem , Antioxidantes/química , Antioxidantes/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Masculino , Espectrometria de Massas , Quercetina/química , Quercetina/metabolismo , Ratos , Relação Estrutura-Atividade
16.
J Agric Food Chem ; 67(27): 7640-7649, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30951310

RESUMO

Sesamin, a representative sesame lignan, has health-promoting activities. Sesamin is converted into catechol derivatives and further into their glucuronides or sulfates in vivo, whereas the biological activities of sesamin metabolites remain unclear. We examined the inhibitory effects of sesamin metabolites on the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in mouse macrophage-like J774.1 cells and found that a monocatechol derivative SC1, (7α,7'α,8α,8'α)-3,4-dihydroxy-3',4'-methylenedioxy-7,9':7',9-diepoxylignane, has a much higher activity than sesamin and other metabolites. The inhibitory effects of SC1 glucuronides were time-dependently enhanced, associated with the intracellular accumulation of SC1 and the methylated form. SC1 glucuronides and SC1 attenuated the expression of inducible NO synthase (iNOS) and upstream interferon-ß (IFN-ß) in the LPS-stimulated macrophages. The inhibitory effects of SC1 glucuronides against NO production were canceled by the ß-glucuronidase inhibitor and enhanced by the catechol-O-methyltransferase inhibitor. Our results suggest that SC1 glucuronides exert the anti-inflammatory effects by inhibiting the IFN-ß/iNOS signaling through macrophage-mediated deconjugation.


Assuntos
Anti-Inflamatórios , Catecóis/farmacologia , Dioxóis/farmacologia , Glucuronídeos/farmacologia , Interferon beta/antagonistas & inibidores , Lignanas/farmacologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Animais , Catecol O-Metiltransferase/metabolismo , Catecóis/química , Catecóis/metabolismo , Linhagem Celular , Sistema Enzimático do Citocromo P-450/metabolismo , Dioxóis/metabolismo , Glucuronidase/metabolismo , Glucuronídeos/química , Lignanas/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Estrutura Molecular
17.
Biochem Biophys Res Commun ; 374(3): 527-32, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18657514

RESUMO

The localization and target sites of tea catechins underlying their biological activity including anti-atherosclerotic activity have not yet been fully understood. To identify the target sites of catechins in vivo, we have developed a novel monoclonal antibody (mAb5A3) specific for (-)-epicatechin-3-gallate (ECg), one of the major tea catechins. The immunoreactive materials with mAb5A3 were detected in the human atherosclerotic lesions but not in the normal aorta, and were specifically localized in the macrophage-derived foam cells. In vitro experiments using macrophage-like cell lines also showed the significant accumulation of ECg in the cells. We also demonstrated that ECg could suppress the gene expression of a scavenger receptor CD36, a key molecule for foam cell formation, in macrophage cells. These results, for the first time, showed the target site of a tea component ECg in the aorta and might provide a mechanism for the anti-atherosclerotic actions of the catechins.


Assuntos
Aorta/metabolismo , Aterosclerose/metabolismo , Catequina/análogos & derivados , Células Espumosas/metabolismo , Chá/química , Animais , Anticorpos Monoclonais/imunologia , Aorta/efeitos dos fármacos , Aterosclerose/prevenção & controle , Catequina/análise , Catequina/metabolismo , Catequina/farmacologia , Linhagem Celular , Humanos , Imunoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Arch Biochem Biophys ; 476(2): 124-32, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18267102

RESUMO

Flavonoid-rich diets are expected to decrease the risk of cardiovascular diseases. The localization and target sites of flavonoids underlying the protective mechanism in vivo have not been fully investigated because the methods for detection of flavonoids have been limited to chemical analysis such as high-performance liquid chromatography. To further understand the actions of flavonoids in vivo, we developed a novel methodology that immunochemically evaluates flavonoids using specific antibodies. Quercetin-3-glucuronide (Q3GA), a major metabolite in human plasma, was coupled with keyhole limpet hemocyanin. Alternatively, the sugar moiety of quercetin-3-glucoside (Q3G) was succinylated and then coupled with a carrier protein. Using these two immunogens, we finally obtained two monoclonal antibodies, mAb14A2 and mAb11G6, from the immunogen using Q3GA and Q3G, respectively. Competitive enzyme-linked immunosorbent assay showed the unique difference in the specificity between the two similar antibodies: mAb14A2 recognized several quercetin-3-glycosides including Q3G and rutin but mAb11G6 was highly specific to the Q3G structure. The macrophage-derived foam cells in human atherosclerotic lesions were significantly stained with mAb14A2 but scarcely with mAb11G6. These results showed that the anti-flavonoid glycoside antibodies are useful tools for evaluating their localization in tissues and that the specificities strongly depend on the immunogen design for synthesizing the hapten-protein conjugates.


Assuntos
Anticorpos Monoclonais/química , Flavonoides/imunologia , Glicosídeos/imunologia , Animais , Aterosclerose/sangue , Aterosclerose/patologia , Ensaio de Imunoadsorção Enzimática , Células Espumosas/metabolismo , Células Espumosas/patologia , Glucuronídeos/sangue , Glucuronídeos/farmacologia , Hemocianinas/metabolismo , Humanos , Macrófagos/patologia , Moluscos , Quercetina/sangue , Quercetina/metabolismo , Sensibilidade e Especificidade
19.
Chem Res Toxicol ; 21(7): 1407-14, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18512968

RESUMO

Hypochlorous acid (HOCl), a strong oxidant derived from myeloperoxidase in neutrophils and macrophages, can chlorinate DNA bases at the site of inflammation. Because little is known about the protective role of natural antioxidants, such as polyphenols, for the myeloperoxidase-derived DNA damage, we screened the inhibitory effects of various phenolic antioxidants on the chlorination of the 2'-deoxycytidine residue by HOCl in vitro and found that green tea catechins, especially (-)-epicatechin gallate (ECg) and (-)-epigallocatechin gallate (EGCg), significantly inhibited the chlorination. These catechins also reduced nucleoside- and taurine-chloramines, which can induce secondary oxidative damage, into their native forms. Mass spectrometric and nuclear magnetic resonance analyses showed that ECg and EGCg can effectively scavenge HOCl and/or chloramine species resulting in the formation of mono- and dichlorinated ECg and EGCg. Using the HL-60 human leukemia cell line, it was found that ECg could efficiently accumulate in the cells. Immunocytometric analyses using antihalogenated 2'-deoxycytidine antibody showed that pretreatment of cells with ECg inhibited the HOCl-induced immunofluorescence. In addition, the chlorinated ECg derivatives were detected in the HOCl-treated HL-60 cells. These results showed that green tea catechins, especially 3-galloylated catechins, may be the plausible candidate for the prevention of inflammation-derived DNA damage and perhaps carcinogenesis.


Assuntos
Catequina/análogos & derivados , Dano ao DNA/efeitos dos fármacos , DNA de Neoplasias/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Ácido Hipocloroso/toxicidade , Oxidantes/toxicidade , Animais , Catequina/metabolismo , Catequina/farmacologia , Bovinos , Sobrevivência Celular/efeitos dos fármacos , DNA/química , DNA/efeitos dos fármacos , DNA de Neoplasias/química , Relação Dose-Resposta a Droga , Antagonismo de Drogas , Sequestradores de Radicais Livres/metabolismo , Células HL-60 , Halogenação , Humanos , Ácido Hipocloroso/antagonistas & inibidores , Ácido Hipocloroso/química , Oxidantes/antagonistas & inibidores , Oxidantes/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Chá/química
20.
Chem Res Toxicol ; 21(8): 1600-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18620432

RESUMO

Myeloperoxidase (MPO), secreted by activated neutrophils and macrophages at the site of inflammation, may be implicated in the oxidation of protein/lipoprotein during the development of cardiovascular diseases. Flavonoids have been suggested to act as antioxidative and anti-inflammatory agents in vivo; however, their molecular actions have not yet been fully understood. In this study, we examined the molecular basis of the inhibitory effects of dietary flavonoids, such as quercetin, and their metabolites on the catalytic reaction of MPO using a combination of biological assays and theoretical calculation studies. Immunohistochemical staining showed that a quercetin metabolite was colocalized with macrophages, MPO, and dityrosine, an MPO-derived oxidation product of tyrosine, in human atherosclerotic aorta. Quercetin and the plasma metabolites inhibited the formation of dityrosine catalyzed by the MPO enzyme and HL-60 cells in a dose-dependent manner. Spectrometric analysis indicated that quercetin might act as a cosubstrate of MPO resulting in the formation of the oxidized quercetin. Quantitative structure-activity relationship studies showed that the inhibitory actions of flavonoids strongly depended not only on radical scavenging activity but also on hydrophobicity (log P). The requirement of a set of hydroxyl groups at the 3, 5, and 4'-positions and C2-C3 double bond was suggested for the inhibitory effect. The binding of quercetin and the metabolites to a hydrophobic region at the entrance to the distal heme pocket of MPO was also proposed by a computer docking simulation. The current study provides the structure-activity relationships for flavonoids as the anti-inflammatory dietary constituents targeting the MPO-derived oxidative reactions in vivo.


Assuntos
Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , Macrófagos/efeitos dos fármacos , Peroxidase/antagonistas & inibidores , Quercetina/farmacologia , Administração Oral , Animais , Antioxidantes/química , Aorta/química , Aorta/metabolismo , Aorta/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Simulação por Computador , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Sequestradores de Radicais Livres/metabolismo , Células HL-60 , Humanos , Macrófagos/enzimologia , Peroxidase/metabolismo , Relação Quantitativa Estrutura-Atividade , Quercetina/análogos & derivados , Quercetina/química , Ratos , Ratos Endogâmicos , Tirosina/análogos & derivados , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa